Recorded ARMA HFC 2023 Series Presentation– Optimization of Perforation Phasing for Improving Uniformity of Proppant Distribution Between Clusters

This ARMA Hydraulic Fracturing Community (HFC) presentation summarizes the work on proppant transport in horizontal perforated wellbores. Specifically, it discusses the model for proppant distribution between perforations depending on their orientation and location within the stage, optimal configurations are proposed, and performance is evaluated.

Read More

Technical barriers for deep closed-loop geothermal

This is the most exciting time in my lifetime for geothermal. There are many, many innovative things happening. To name a few – promising new approaches to Enhanced Geothermal Systems, geothermal projects in sedimentary and lower enthalpy formations, new approaches for geothermal exploration, lithium extraction from produced brines, geothermal energy storage, integrations with CO2 storage and capture, and new technologies for producing energy from hot water that is coproduced with oil and gas. However, this post is about a concept about which I remain skeptical – deep closed-loop heat exchangers (McClure, 2021). These designs are sometimes called ‘Advanced Geothermal Systems,’ AGS (Malek et al., 2022).

Read More

Modeling simulfracs and subsurface implications

Simulfrac’s are growing in popularity (see 2021 JPT article for when the trend was just gaining momentum). The idea is that one pumping crew can treat two wells simultaneously versus one well at a time. As such, a frac crew may zipper four wells at a time versus two. At ResFrac we are seeing an increase in simulfrac interest across our consulting and license customers. Simulfrac’ing wells within the ResFrac software is simple to set up without any complicated modifications – so this makes ResFrac an ideal platform to investigate the effects of simulfracs.

Read More

Optimization of perforation orientation for achieving uniform proppant distribution between clusters

Previously, a mathematical model for the problem of slurry flow in a perforated wellbore was described and the underlying physical mechanisms were discussed. The purpose of this blog post, on the other hand, is to couple the model with an optimization algorithm to investigate optimal perforation orientations that lead to the desired uniform proppant distribution between perforations. A brief description of the model is added at the beginning to cater for readers who are not familiar with the previous blog post.

Read More

Proppant distribution between perforation clusters

This blog post summarizes the model for calculating proppant distribution between perforation clusters. A very detailed description of the model and literature review are available in [1]. The purpose here is to outline the model and its main features, to demonstrate the comparison with some of the available data (more comparisons in [1]), as well as to discuss limiting cases and sensitivities to various parameters. This blog post is solely focused on presenting the mathematical model. In future work, the results will be applied to practical optimization decisions.

Read More
Figure 5: Example simulation with ‘submesh fractal D’ set to 0.6.

Simulating ‘Fractal Fracture Swarms’ in a General-Purpose Reservoir Simulator

This blog post describes a new capability in ResFrac to capture the effect of ‘fracture swarms’ on production decline trends. Based on work from Acuna (2020), the idea is that variable spacing between fractures causes a gradual onset of production interference. Fractures in a swarm may be numerous and tightly spaced,  so rather than representing each individual crack in the model, we treat each swarm as a single crack and use a numerical technique to capture their effects. In ResFrac, this capability is useful because it provides another mechanism for explaining (and matching) production drawdown trends. For further details, refer to Section 19.10 from McClure et al. (2022).

Read More

Learn why both independents and supermajors trust ResFrac

Search