Blog

Detailed technical articles, company updates, and industry perspectives

Want to learn more about what ResFrac is doing? Sign up for updates.
simulation with five wells in a hypothetical formation with two pay zones. In the base simulation, all the wells are landed in the upper pay zone. However, the algorithm is given the option to vary the landing depth of the second and fourth wells. The figures below show the ‘baseline’ simulation.

ResFrac’s Automated Economic Optimization Tool

ResFrac’s automated optimization tool allows you to quickly and easily identify the economically best well spacing and frac design. This blog post steps through a simple demo of our built-in economics engine that is similar to those used by commercial software in the industry. It accounts for details such as working interest, different types of taxes, time-varying operations cost, etc.

Read more

Latest content

Proppant distribution between perforation clusters

his blog post summarizes the model for calculating proppant distribution between perforation clusters. A very detailed description of the model and literature review are available in [1]. The purpose here is to outline the model and its main features, to demonstrate the comparison with some of the available data (more comparisons in [1]), as well as to discuss limiting cases and sensitivities to various parameters. This blog post is solely focused on presenting the mathematical model. In future work, the results will be applied to practical optimization decisions.

Read more
Figure 5: Example simulation with ‘submesh fractal D’ set to 0.6.

Simulating ‘Fractal Fracture Swarms’ in a General-Purpose Reservoir Simulator

This blog post describes a new capability in ResFrac to capture the effect of ‘fracture swarms’ on production decline trends. Based on work from Acuna (2020), the idea is that variable spacing between fractures causes a gradual onset of production interference. Fractures in a swarm may be numerous and tightly spaced,  so rather than representing each individual crack in the model, we treat each swarm as a single crack and use a numerical technique to capture their effects. In ResFrac, this capability is useful because it provides another mechanism for explaining (and matching) production drawdown trends. For further details, refer to Section 19.10 from McClure et al. (2022).

Read more

How to Diagnose False Radial Flow in a Diagnostic Fracture Injection Test (DFIT)

Genuine radial flow is rare in shale DFITs. If it does occur, it is typically observed in tests with very low injection volume (less than 10-20 bbl), unusually long shut-in (longer than one week), and relatively high permeability (greater than one microdarcy). Genuine radial flow should only be diagnosed if it occurs after an extended (at least one log cycle) period of after-closure linear flow. If ‘false radial’ flow is misdiagnosed and used to estimate permeability, it leads to a large overestimate (10-100x).

Read more

Technical articles

Proppant distribution between perforation clusters

his blog post summarizes the model for calculating proppant distribution between perforation clusters. A very detailed description of the model and literature review are available in [1]. The purpose here is to outline the model and its main features, to demonstrate the comparison with some of the available data (more comparisons in [1]), as well as to discuss limiting cases and sensitivities to various parameters. This blog post is solely focused on presenting the mathematical model. In future work, the results will be applied to practical optimization decisions.

Read more
Figure 5: Example simulation with ‘submesh fractal D’ set to 0.6.

Simulating ‘Fractal Fracture Swarms’ in a General-Purpose Reservoir Simulator

This blog post describes a new capability in ResFrac to capture the effect of ‘fracture swarms’ on production decline trends. Based on work from Acuna (2020), the idea is that variable spacing between fractures causes a gradual onset of production interference. Fractures in a swarm may be numerous and tightly spaced,  so rather than representing each individual crack in the model, we treat each swarm as a single crack and use a numerical technique to capture their effects. In ResFrac, this capability is useful because it provides another mechanism for explaining (and matching) production drawdown trends. For further details, refer to Section 19.10 from McClure et al. (2022).

Read more

How to Diagnose False Radial Flow in a Diagnostic Fracture Injection Test (DFIT)

Genuine radial flow is rare in shale DFITs. If it does occur, it is typically observed in tests with very low injection volume (less than 10-20 bbl), unusually long shut-in (longer than one week), and relatively high permeability (greater than one microdarcy). Genuine radial flow should only be diagnosed if it occurs after an extended (at least one log cycle) period of after-closure linear flow. If ‘false radial’ flow is misdiagnosed and used to estimate permeability, it leads to a large overestimate (10-100x).

Read more

ResFrac updates

DOE Innovators Roundtable on Enhanced Geothermal Systems with Secretary Granholm

This week, the US Secretary of Energy, Jennifer Granholm, was in Houston to announce an ‘Earthshot’ initiative to accelerate domestic production of zero-emission, baseload geothermal energy  Secretary Granholm announced the initiative at a press conference, and then hosted a roundtable discussion with Reginald DesRoches, the president of Rice University, and a group of innovators in the geothermal space. ResFrac CEO Mark McClure was one of the participants in the roundtable. Sec. Granholm asked him how to increase engagement from the oil and gas industry in geothermal.

Read more

Highlights on propagation from preexisting fractures in ResFrac

The purpose of this blog post is to cover recently developed ResFrac capability that allows investigation of the effect of natural fractures on hydraulic fracture propagation. While this option has always been available for the ‘discrete’ propagation algorithm, now it also has become available for the ‘continuous’ algorithm. There are some noticeable changes compared to the previous implementation and they are covered next.

Read more

2022 ResFrac Annual Symposium

Last week we held our Fourth Annual ResFrac Symposium. The premise of the event is to bring together ResFrac users to share use cases, best practices, and general developments in the industry. This year was our biggest yet, with nearly 100 people joining either in-person or online throughout the day-long event, representing 26 different oil, gas, and geothermal operating companies, seven universities, and several service company collaborators.

Read more

Industry perspectives

2022 Geothermal Rising

Reflections from the 2022 Geothermal Rising Conference

This is an exciting time for EGS. Multistage hydraulic fracturing has tremendous potential to improve the productivity of geothermal wells in low permeability formations. Projects are happening right now to test this concept in full-scale EGS wells. If they prove successful, we could soon see a major increase in geothermal energy production.

Read more

Commentary on Four New DFIT Papers: (a) Direct In-Situ Measurements of Fracture Opening/Closing from the EGS Collab Project; (b) Comparison of Stress Measurement Techniques from the Bedretto Project; (c) a Statistical Summary of 62 DFITs Interpretations Across Nine Shale Plays; and (d) A Different Perspective: An Article Advocating the Use of the Tangent Method

This post provides commentary on recent four papers on diagnostic fracture injection testing (DFIT). The first paper uses in-situ deformation measurements to directly observe fractures opening and closing during fracture injection-falloff tests (Guglielmi et al., 2022). The second compares various stress measurement techniques in a series of fracture/injection tests from the Bedretto project (Bröker and Ma, 2022). The third statistically reviews results from applying the interpretation procedure from McClure et al. (2019) to 62 DFITs across nine different shale plays (McClure et al., 2022). The fourth is an op-ed written in JPT (Journal of Petroleum Technology) by an advocate of the tangent method for estimating DFIT closure stress (Buijs, 2021; 2022). This article presupposes that the reader already has familiarity with these topics. If you would like more background, please refer to McClure et al. (2019).

Read more

Notable Papers from SPE HFTC 2022

The SPE Hydraulic Fracturing Technology Conference (HFTC) was last week. There were tons of great, practically relevant, papers. People are really locked-in on the key value drivers. This blog post gives a sampling of a few of the papers that I found most interesting. I don’t discuss any of the ResFrac papers because they were in a previous blog post.

Read more

Learn why both independents and supermajors trust ResFrac

Search