Enhanced Geothermal Systems

Multistage fracturing is a breakthrough for EGS - dramatically improving energy production per well

ResFrac's fully-coupled fracturing and reservoir simulator is ideal for simulating hydraulic fracturing and long-term circulation in multistage EGS designs

Fracture propagation


3D fracture initiation and propagation, interaction between wells, stress shadowing, proppant transport, complex fluid additives and non-Newtonian flow, diverters, and wellbore dynamics.

Fracture reopening during circulation

Ability to simulate the mechanical opening of fractures, and the associated increases in fracture conductivity, induced by cooling during long-term fluid circulation.

Decision support tools



NPV maximization using ResFrac's economics engine and cloud-based optimization tools.

The ResFrac team offers authentic, deep expertise in multistage fracture design optimization and Enhanced Geothermal Systems

ResFrac shows how buoyancy-driven convection and thermoelastic stresses can surprisingly improve thermal longevity.
Researchers from Fervo Energy and Princeton used ResFrac to design a flexible-dispatch EGS system.

What are Enhanced Geothermal Systems?

Source: SMU Dedman College of Humanities & Sciences Geothermal Lab

Enhanced Geothermal Systems use hydraulic stimulation to produce from high-temperature, low permeability resources

Geothermal production potential is huge across the United States and globally. However, production is limited by insufficient natural permeability in most resources. Analogous to the shale revolution, EGS promises to unlock these resources by enabling much higher flow rates and low power costs.

Multistage stimulation resolves the problems that have historically limited EGS performance

Traditional EGS designs have been performed in a single stage, without proppant. These designs suffer from flow localization, where the fluid flows into a relatively small number of flowing pathways. In formations lacking large, naturally conductive faults, these designs have suffered from insufficient unpropped conductivity. Shale-style ‘plug and perf’ limited-entry completions with resolve both of these problems.

Key technical references

Almarri, M., M.J. AlTammar, G. Fowler, and K. Alruwaili. Utilizing Thermally Controlled Fluid to Improve Cluster Uniformity and Efficiency. SPE Unconventionals Conference in the Middle East.
 
 
 
McClure, M. 2023. Technical Barriers for Deep Closed-Loop Geothermal. This article was originally posted as a ResFrac blog post, and published on arXiv in March 2023.
 
McClure, M. 2023. Thermoelastic fracturing and bouyancy-driven convection- Surprising sources of longevity for EGS circulation. This article was originally posted as a ResFrac blog post, and published on ArXiv in August 2023.
 
McClure, M. 2023. Calibration Parameters Required to Match the Utah FORGE 16A(78)-32 Stage 3 Stimulation with a Planar Fracturing Model. Fourty-Eigth Workshop on Geothermal Reservoir Engineering, Stanford, CA.
 
 
 
 
McClure, M., and R. Horne. 2014. An investigation of stimulation mechanisms in Enhanced Geothermal Systems. International Journal for Rock Mechanics and Mining Sciences.
 
McClure, M., R. Irvin, K. England, and J. McLennan. 2024. Numerical Modeling of Hydraulic Stimulation and Long-Term Fluid Circulation at the Utah FORGE Project.  Fourty-Ninth Workshop on Geothermal Reservoir Engineering, Stanford, CA.
 
McClure, M., C. Kang, and G. Fowler. 2022. Optimization and Design of Next-Generation Geothermal Systems Created by Multistage Hydraulic Fracturing. SPE Hydraulic Fracturing Technology Conference and Exhibition. 
 
 
Shiozawa, S., and M. McClure. 2014. EGS designs with horizontal wells, multiple stages, and proppant. Thirty-Ninth Workshop on Geothermal Reservoir Engineering, Stanford, CA.
 
Wang, Z., M. McClure, and R. Horne. 2009. A single-well EGS configuration using a thermosiphon. Thirty-Fourth Workshop on Geothermal Reservoir Engineering, Stanford University.

Recent content from the ResFrac blog

What ‘company culture’ means to us

We recently held our annual company retreat. This is an important event because we are a fully remote company, and it gives us the chance to get together in-person and spend quality time. This year, we did the retreat in Houston, following URTeC and our annual symposium. We visited Space Center Houston, went to an Astros game, and ate BBQ and Tex-Mex. As a Houston native, I picked some of my favorite things to do in town! We also held a meeting on ‘company culture.’ I asked the group – how do you perceive our company culture? What do we do well, and what could we do better? Here are the highlights.

Read more

Horizontal hydraulic fractures in shales: are they real?

In ResFrac, we are always challenging ourselves—what should we be doing better? What new capabilities should we add to the simulator? One of our newest projects is adding horizontal fracture propagation. Under most conditions, hydraulic fractures form vertically, not laterally. However, in specific circumstances, horizontal fractures develop. Sometimes, they form in addition to vertical fractures, and sometimes, they form exclusively without any vertical fractures. Horizontal fracture propagation has not conventionally been included in commercial hydraulic fracturing simulators, but we think this is a capability well-worth developing.

Read more

Previewing the Seven(!) ResFrac Papers to be Presented at the Unconventional Resources Technology Conference

Next week, ResFrac will be coauthoring seven papers at the Unconventional Resources Technology Conference (URTeC). These papers include: operator case studies in the Haynesville, Marcellus, and Bakken, a study quantifying the effect of proppant uniformity on production and economics, a new procedure generalizing the Devon Quantification of Interference (DQI) method, and an excellent paper by a University of Texas PhD student on proppant flowback.

Read more

Learn why both independents and supermajors trust ResFrac