Notable papers from the 2024 SPE Hydraulic Fracturing Technology Conference

Last week wrapped another outstanding SPE Hydraulic Fracturing Technology Conference. Every year, I write a blog post highlighting notable HFTC papers. Here is this year’s edition! As in past years, this is not an attempt to pick the ‘best’ papers. It’s a selection of papers that I personally found insightful, based on my own interests and specialization.

Read More

Fervo Energy’s ‘Project Red’ Results Are a Historic Breakthrough for Geothermal Energy – What Comes Next?

Fervo Energy announced the results from their ‘Project Red’ pilot in northern Nevada (Norbeck and Latimer, 2023; Ma, 2023). The results are spectacular. For nearly 50 years, the goal of Enhanced Geothermal Systems (aka, Hot Dry Rock) has been to convert low permeability, hot formations into economically viable geothermal reservoirs (Murphy et al., 1977). Success has been elusive. During stimulation, flow tends to localize into a small number of flowing fracture pathways. This limits the flow capacity and heat sweep efficiency of the resulting reservoir.

Read More

Interesting papers from the 2023 SPE Hydraulic Fracturing Technology Conference

The 2023 SPE Hydraulic Fracturing Technology Conference was last week, and as usual, it had an outstanding lineup of papers and speakers. This blog post has a brief lineup of some of the papers that I found most interesting. As in past years, this rundown focuses on papers that I found interesting, based on my own personal interests. Usually, I am most interested in papers that improve our understanding ‘what’s going on’ in the subsurface. Also, I coauthored a paper at the conference, so naturally, I can’t help but include it on this list!

Read More
2022 Geothermal Rising

Reflections from the 2022 Geothermal Rising Conference

This is an exciting time for EGS. Multistage hydraulic fracturing has tremendous potential to improve the productivity of geothermal wells in low permeability formations. Projects are happening right now to test this concept in full-scale EGS wells. If they prove successful, we could soon see a major increase in geothermal energy production.

Read More

Commentary on Four New DFIT Papers: (a) Direct In-Situ Measurements of Fracture Opening/Closing from the EGS Collab Project; (b) Comparison of Stress Measurement Techniques from the Bedretto Project; (c) a Statistical Summary of 62 DFITs Interpretations Across Nine Shale Plays; and (d) A Different Perspective: An Article Advocating the Use of the Tangent Method

This post provides commentary on recent four papers on diagnostic fracture injection testing (DFIT). The first paper uses in-situ deformation measurements to directly observe fractures opening and closing during fracture injection-falloff tests (Guglielmi et al., 2022). The second compares various stress measurement techniques in a series of fracture/injection tests from the Bedretto project (Bröker and Ma, 2022). The third statistically reviews results from applying the interpretation procedure from McClure et al. (2019) to 62 DFITs across nine different shale plays (McClure et al., 2022). The fourth is an op-ed written in JPT (Journal of Petroleum Technology) by an advocate of the tangent method for estimating DFIT closure stress (Buijs, 2021; 2022). This article presupposes that the reader already has familiarity with these topics. If you would like more background, please refer to McClure et al. (2019).

Read More

Notable Papers from SPE HFTC 2022

The SPE Hydraulic Fracturing Technology Conference (HFTC) was last week. There were tons of great, practically relevant, papers. People are really locked-in on the key value drivers. This blog post gives a sampling of a few of the papers that I found most interesting. I don’t discuss any of the ResFrac papers because they were in a previous blog post.

Read More

Epistemic Challenges for Subsurface Engineering, Part II: Creating Value with a Hypothesis-Driven Workflow

How can we reconsider our approach to subsurface engineering in order to evaluate claims of truth and drive long-term value? I propose a hypothesis-driven approach, in which field testing is placed at the center of our efforts to assess the truth and improve over time. Physics-based and data-driven approaches are used as hypothesis-generating activities that motivate and prioritize hypothesis testing through field operations. Effective field testing requires the coordination of operations to enable clean well-to-well production comparisons and the design of data collection to enable strongly supported conclusions. Field testing need not increase the cost of field operations if it is done through intentional and thoughtful planning.

Read More

Learn why both independents and supermajors trust ResFrac

Search