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Abstract 

This paper summarizes findings from a one-year study sponsored by seven operators and service companies 

to investigate interpretation of diagnostic fracture injection tests (DFIT’s). The study combined 

computational modeling, a diverse collection of field data, and operator experience. DFIT simulations were 

performed with a three-dimensional hydraulic fracturing, wellbore, and reservoir simulator that describes 

fracture propagation, contacting of the fracture walls, and multiphase flow. Interpretation procedures were 

applied to estimate stress, permeability, and pressure from the synthetic data. The interpretations were 

compared to the simulation input parameters to evaluate accuracy. Based on the results, new techniques 

were developed, existing techniques were refined, and an overall interpretation protocol was developed. 

The techniques were applied to interpret over thirty field DFIT’s drawn from shale plays across the US and 

Canada, and the methods were evaluated in the context of operator experience. The results are applicable 

to fracturing tests in formations with permeability ranging from nanodarcies to 10s of microdarcies. The 

minimum principal stress is estimated by identifying the ‘contact pressure’ when the fracture walls come 

into contact, causing fracture compliance and system storage coefficient to decrease. After the walls come 

into contact, the pressure transient is controlled by the interplay of changing fracture compliance, deviation 

from Carter leakoff, and multiphase flow. The contact pressure is slightly greater than the minimum 

principal stress. It can be identified from either a plot of dP/dG or a relative stiffness plot. Permeability is 

estimated using the G-function method, a newly developed h-function method that accounts for deviation 

from Carter leakoff, and impulse linear flow. These three methods, which are based on linear flow 

geometry, require an estimate of fracture area. We derive equations for estimating area using mass balance 

equations, accounting for wellbore storage and fluid leakoff. The results from field data show that impulse 

linear permeability estimates are usually 2-5 times lower than estimates derived from the G-function and 

h-function methods, apparently indicating a difference between effective permeability during leakoff and 

permeability during flow of reservoir fluid through the formation. Impulse radial flow regime may be used 

for estimating permeability, but should be used with caution. Simulation results indicate that a variety of 

processes can cause an apparent radial trend that is not actually radial flow. Simulations and field data 

indicate that ‘false radial’ is very common in gas reservoirs and, if applied, leads to a large overestimate of 

permeability. Production history matching using overestimated permeability will underestimate fracture 

length, potentially resulting in suboptimal choices for well and cluster spacing. 

http://www.urtec.org/
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1. Introduction 

1.1 Background 

Diagnostic fracture injection tests (DFIT’s) involve water injection at a rate and pressure sufficient to create 

a dominant hydraulic fracture, followed by a shut-in period lasting days, weeks, or even months. The trend 

in pressure after shut-in is analyzed to estimate stress, permeability, and/or pore pressure. Compared with 

other types of fracture injection tests, DFIT’s typically involve a longer shut-in, are performed after drilling 

is complete, are usually performed in low permeability rock, and have a greater emphasis on estimating 

reservoir properties, such as permeability and pore pressure.  

The magnitude of the minimum principal stress, permeability, and pore pressure are key parameters in 

reservoir engineering, hydraulic fracturing, and drilling. Knowledge of the stress state is used during drilling 

(wellbore stability and mitigation of lost circulation), exploration (fault seal analysis and prediction of 

critically stressed fractures), and hydraulic fracturing (predicting injection pressure, estimating height 

growth, selecting proppant, and inferring net pressure) (Zoback, 2007; Economides and Nolte, 2000; Smith 

and Montgomery, 2015). Permeability estimates are used during optimization of hydraulic fracture design, 

well spacing, and cluster spacing. Pore pressure estimates are used to delineate the extent of drainage, which 

helps with optimization of well spacing.  

Permeability is difficult to measure in unconventional formations. Permeability from core may not be 

directly applicable in reservoir engineering calculations because in-situ flow can be strongly influenced by 

pre-existing planes of weakness that are not sampled in the core. In addition, core measurement may be 

impacted by changes in the rock as it is removed from the subsurface. Rate-transient analysis (RTA) yields 

an estimate of fracture surface area times the square root of permeability (𝐴√𝑘), but cannot estimate these 

parameters separately. On the other hand, DFIT’s provide the opportunity to derive a unique, in-situ 

estimate of permeability. The DFIT provides a permeability estimate that is the area-weighted average of 

the permeability across the fracture surface area. It is an estimate of the effective permeability to the mobile 

reservoir phase (absolute permeability times relative permeability). 

This paper summarizes findings from a one-year study sponsored by seven operators and service 

companies. The purpose of the study was to evaluate the accuracy of existing DFIT interpretation 

techniques, develop new techniques if needed, and assemble an overall interpretation procedure. The study 

integrated unique simulation capability, field data, and operator expertise. The interpretation procedure can 

be performed entirely in an Excel spreadsheet. 

The body of the paper presents a step-by-step worked example, commentary on the most important findings, 

and additional field examples. The appendix provides detailed mathematical derivations explaining the 

methods applied in the paper 

The study focused primarily on DFIT’s performed in formations with permeability on the order of 

nanodarcies to 10s of microdarcies. With higher permeability, transients behave qualitatively differently, 

and many of the techniques in this paper cannot be applied (discussed in Section 4.1).  

1.2 Literature review 

DFIT interpretation combines concepts from well test analysis and hydraulic fracture analysis. 

Conventional well testing involves production or injection of fluid at pressure below the fracture gradient. 

Pressure data is analyzed to infer permeability, skin, and other parameters (Theis, 1935; Horne, 1995; 

Kamal et al., 2009; Stewart, 2011; Spivey and Lee, 2013). DFIT’s involve similar physics, but with 

important differences. In conventional well tests, fractures are static. In DFIT’s, fractures are dynamic – 

changing in size, compliance, and conductivity. As a result, concepts from conventional well test analysis 

are not always directly applicable to DFIT analysis.  

Hydraulic fracturing was first described in a publication by Clark (1949). In subsequent decades, it was 

recognized that hydraulic fracturing could be used as a method to estimate the magnitude of the minimum 
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principal stress (Hubbert and Willis, 1957; Godbey and Hodges, 1958; Kehle, 1964; Haimson and Fairhurst, 

1967; Hickman and Zoback, 1983). If fluid is injected at pressure greater than the minimum principal stress, 

a hydraulic fracture will form and propagate through the formation. As a result, the minimum principal 

stress can be estimated from pressure measurements during and after injection (Economides and Nolte, 

2000; Zoback, 2007; Smith and Montgomery, 2015). The uniaxial stress/strain equations can be used for 

engineering purposes to help predict stress differences between layers (Eaton, 1969; Blanton and Olson, 

1999), but fracture injection tests are needed for calibration and to ensure accuracy. 

Nolte (1979) extended the applicability of fracturing tests by developing analytical techniques that can be 

used to estimate fluid leakoff parameters. These techniques can assess leakoff even when using complex 

fluids that develop filtercake. These tests are typically called minifrac tests (McLennan and Roegiers, 1982) 

or fracture calibration tests (Mayerhofer and Economides, 1993). The G-function developed by Nolte 

(1979) became a routine part of data plotting and interpretation (Castillo, 1987; Barree and Mukherjee, 

1996). Mayerhofer and Economides (1993) and Mayerhofer et al. (1995) showed how to disentangle the 

effects of filtercake and formation permeability on leakoff.  

Conventional well testing is infeasible in very tight formations because of the difficulty of sustaining 

sufficiently low rates of production or injection. The “diagnostic fracture injection test” (DFIT) emerged to 

combine the benefits of a well test and a fracturing test – providing estimates for stress, permeability, and 

pore pressure (Craig and Brown, 1999). ‘Preclosure’ analysis methods are usually based on techniques from 

Nolte (1979) and Mayerhofer and Economides (1993) and Mayerhofer et al. (1995). Barree and Mukherjee 

(1996) and Barree et al. (2009) developed techniques for qualitative interpretation and for estimating the 

closure pressure and minimum principal stress. Impulse analysis is based on the use of impulse solutions 

from conventional well testing (Gu et al., 1993; Soliman et al., 2005; Craig and Blasingame, 2006) or the 

‘linear flow time function’ technique developed by Nolte et al. (1997). Examples of DFIT interpretation 

are provided in recent papers by Marongiu-Porcu et al. (2011; 2014), Soliman and Kabir (2012), Soliman 

and Gamadi (2012), Cramer and Nguyen (2013), Padmakar (2013), Wallace et al. (2014), Meng et al. 

(2014), Craig (2014), Zanganeh et al. (2018), and Hawkes et al. (2018).  

McClure et al. (2014; 2016) and Jung et al. (2016) proposed the compliance method of estimating stress 

from a DFIT (Section 3.1.2). The compliance method leads to an earlier, higher stress estimate than the 

commonly used tangent method (Barree et al., 2009). McClure et al. (2016) and Jung et al. (2016) performed 

detailed DFIT simulations considering the effect of residual aperture fracture after the fracture walls 

contact. Simulations indicate that in low permeability formations, the contacting of the fracture walls causes 

the magnitude of the pressure derivative to increase, resulting in a pressure signal often interpreted as height 

recession or closure of transverse fractures (Barree et al., 2009). Wang and Sharma (2017) reproduced these 

findings and proposed a modified approach for estimating stress called the ‘variable compliance method.’ 

1.3 Defining a new term – the ‘contact pressure’ 

The term ‘closure pressure’ is used widely in the literature but is rarely given a precise definition. A review 

of the literature shows that a variety of assumptions are made about ‘closure pressure,’ and these 

assumptions are often problematic and inconsistent. Most authors assume that the closure pressure is equal 

to the magnitude of the minimum principal stress (issues with this definition are discussed in Section A.2). 

Craig and Blasingame (2006) assume that the compliance (or compressibility) of a ‘closed’ fracture is 

negligible (issues with this definition are discussed in Section A.2). The classical calculation of efficiency 

from the G-time to closure (Equation 5) is derived assuming that there is zero fluid remaining in the fracture 

at ‘closure’ (issues with this assumption are discussed in Section A.12). McClure et al. (2016) define closure 

as being the point in time when the fracture walls first come into contact, decreasing the overall compliance 

of the system (issues with this definition are discussed in Section 3.1.9). Nolte et al. (1997) derive the ‘linear 

flow time function’ assuming that Carter leakoff occurs until closure, at which point leakoff rate drops to 

zero (issues with this definition are discussed in Section A.11). 
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In Section A.2, we show that there is not any specific response in the pressure transient (or any other 

measurement) when fluid pressure is exactly equal to the minimum principal stress, Shmin. Instead, Shmin 

can be estimated from its proximity to a process that does create a signature in the pressure transient – the 

contacting of the fracture walls, which causes a measurable increase in the system stiffness (or decrease in 

compliance). We define the pressure at this point in time as the ‘contact pressure.’ It is equivalent to the 

‘closure pressure’ defined by McClure et al. (2016). However, because the definition of ‘closure pressure’ 

is itself a point of confusion, we prefer to use the term ‘contact pressure.’ 

1.4 Study approach 

In our study, we performed a comprehensive reassessment of the entire DFIT analysis procedure – 

estimating stress, permeability, and pore pressure. Based on the results, we developed a detailed, step-by-

step interpretation procedure.  

First, a large number of DFIT simulations were performed under a variety of conditions. The simulations 

were performed with a three-dimensional hydraulic fracturing, wellbore, and reservoir simulator that 

rigorously handles fracture propagation, contacting of the fracture walls, and multiphase flow (McClure 

and Kang, 2018). Conventionally, DFIT simulations and/or analytical approaches have isolated parts of the 

problem and solved them separately. The fully integrated approach used in this study captures the 

interactions between processes, which have a material impact on system behavior. 

Different analysis procedures were applied to analyze the simulations results, and the interpretations were 

compared with the (known) simulation input parameters to assess accuracy. Based on the results, a set of 

DFIT interpretation guidelines were developed (summarized in Section 2.2). The guidelines incorporate 

both pre-existing methods and newly developed techniques.  

The interpretation guidelines were applied to analyze a dataset of field DFIT’s contributed by operators. 

The results were compared with operator experience and expertise to assess performance. Due to limits on 

paper length, only a small set of the simulations and the field results are shared in this paper.  

This paper does not address many operational aspects of performing DFIT’s. Cramer and Nguyen (2013) 

review practical guidelines for DFIT execution. 

2. Methods 

2.1 Numerical simulator 

Numerical simulations were performed using ResFrac, a three-dimensional hydraulic fracturing, reservoir, 

and wellbore simulator. The problem formulation is briefly summarized in this section, and a detailed 

technical description is provided by McClure and Kang (2018). ResFrac has a unique combination of 

physics that enables seamless description of the entire DFIT process, from the beginning of injection to 

late-time impulse flow. The wellbore is meshed from the surface as a series of line-segments. The fracture 

is meshed with rectangles, and the reservoir is meshed with cuboids.  

The unsteady-state mass balance equation is solved in every element at every timestep. Multiphase flow is 

described with the black oil model or the compositional model. Fracture walls come out of contact when 

fluid pressure exceeds normal stress. Then, the amount of mechanical opening in each element is calculated 

to enforce that the fluid pressure is equal to the normal stress on the element, including stress shadow effects 

from all other mechanically open elements. The stress interaction is calculated with the 3D displacement 

discontinuity method of Shou et al. (1997), an approach that provides mesh convergent solutions identical 

to classical continuum mechanics solutions, such as from Sneddon (1946). The opening of every fracture 

element affects the stress on every other element, requiring the solution of a large, coupled system of 

equations in every timestep.  

When the fluid pressure drops sufficiently, the fracture walls come into contact. After the walls contact, the 

elements retain aperture and the ability to conduct fluid. The aperture is calculated using the Willis-Richards 
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et al. (1996) version of the Barton et al. (1985) relations. This joint closure law implicitly handles the 

contacting of the asperities in the fracture walls (Barton et al., 1985; Willis-Richards et al., 1996): 

𝑊 =
𝑊0

1+
9(𝜎𝑛−𝑃)

𝜎𝑛,𝑟𝑒𝑓

.            (1) 

The W0 parameter (Equation 1) corresponds to the average fracture aperture at the contact pressure – the 

pressure when asperities begin to contact, the fracture stiffens, and normal stress is transferred across the 

fracture by solid-solid contact. Conductivity is calculated with the cubic law (Witherspoon et al., 1980).  

Even as the average fracture aperture remains above zero, it is implicit to Equation 1 that the fracture walls 

are in contact across a fraction of the fracture area, at a scale below the resolution of the model (Barton et 

al., 1985). Some numerical modeling approaches explicitly represent individual asperities (Vogler et al., 

2018). However, this approach is computationally expensive and infeasible for field-scale modeling.  

When a new fracture element is created in the model, it is given a very low initial aperture, 1 micron. The 

aperture when the walls contact, W0, cannot initially exceed this initial aperture, and so as the crack opens, 

W0 must increase along with aperture to reach a more physically realistic value. W0 is increased at the end 

of each timestep to be equal to a certain fraction of the total aperture, up to a user-specified limit, W0,max. 

This corresponds to a progressive process of crack formation – roughness developing as the crack 

transitions from ‘not-yet-formed’ to ‘fully formed.’ In reality, this process is controlled by the rock fabric 

(Suarez-Rivera et al., 2013; Gale et al., 2018), is probably scale-dependent (Delaney et al., 1986; Scholz, 

2010), and might depend on operational parameters such as injection rate. After the walls have come into 

contact, aperture has decreased by 90% once effective normal stress reaches 𝜎𝑛,𝑟𝑒𝑓. 

The wellbore model solves the momentum balance equation in each element (in addition to the mass balance 

equations) and includes hydrostatic head, friction, momentum accumulation, and pressure gradient. Flow 

between well elements and fracture elements includes the effect of pressure drop due to both perforation 

(scaling with the square of flow rate) and near-wellbore pressure drop (Equation 22). 

Poroelastic stress changes are rarely considered in DFIT analysis and were not included in the simulations 

performed for this study. In low permeability formations, the region of pressure increase around the fracture 

will be very narrow. As a result, the poroelastic increase on fracture normal stress will be small (Perkins 

and Gonzalez, 1985). Nevertheless, it cannot be assumed that poroelastic stresses will never have a 

significant impact, and this would be an interesting topic for further study. 

2.2 Interpretation procedure 

An interpretation procedure was developed based on simulation results, analytical derivations, and 

application to field data. The procedure is: 

(1) Inspect a plot of pressure versus time to pick the start of injection and the shut-in time. The pressure 

plot should be used to pick shut-in because injection rate data is often unavailable or not synchronized with 

the pressure data. 

(2) Smooth the shut-in pressure transient by resampling along pressure increments (Horne, 1995). A 30 psi 

increment usually yields good results. 

(3) Construct plots of the shut-in data: dP/dG versus G (Section A.3) and a log-log plot of dP and t*dP/dt 

(using actual shut-in time, not superposition time; McClure, 2017). Depending on the interpretation, plots 

of pressure versus t^-1 and t^(-1/2) may also be used. According to the interpreter’s preference, other plots 

can be constructed (G*dP/dG, a log-log plot with the primary derivative dP/dt, linear-flow time function, 

etc.). 

(4) Estimate the wellbore storage coefficient from a plot of cumulative volume injected versus pressure 

prior to breakdown.  
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(5) Identify the point of minimum dP/dG prior to the contact pressure and extrapolate back to G-time equal 

to zero to estimate the effective ISIP (Section 3.1.1). Calculate the ‘effective pressure’ curve, defined as 

being equal to measured pressure after the minimum dP/dG and equal to the linear extrapolation of pressure 

prior to dP/dG (Section 3.1.1). Section 4.1 discusses interpretation of tests with monotonically decreasing 

dP/dG. 

(6) Construct an afterflow plot to assess near-wellbore pressure drop (Sections 3.1.4 and A.7). 

(7) From the log-log plot, identify impulse linear or radial flow regimes from a -1/2 or -1 slope. Be cautious 

about identification of these flow-regime trends (Section 3.1.5). Do not use the log-log plot for 

interpretation prior to the late-time impulse period (ie, prior to the peak in t*dP/dt). 

(8) Depending on the diagnosis of impulse flow, estimate pore pressure from plots of pressure versus either 

t^-1 or t^(-1/2) (Sections 3.1.6 and A.6). If an unambiguous diagnosis of impulse flow is not possible, 

consider reducing injection volume to accelerate the onset of impulse flow in subsequent tests. It is possible 

to perform an extrapolation of the t^(-1/2) or t^(-1) plot, even in the absence of a clear straight line. This 

strategy should be used with caution because it can be significantly inaccurate.  Section A.13 outlines an 

alternative technique that can be used with short-duration transients.  

(9) Calculate the h-function (Section A.8) and construct a plot of h-function versus G-function and a relative 

stiffness plot (Sections 3.1.2 and A.9). 

(10) Using the dP/dG curve and the relative stiffness plot, identify the contact pressure and estimate the 

magnitude of the minimum principal stress (Section 3.1.2). Section 4.1 discusses interpretation of tests 

where the contact pressure cannot be identified. 

(11) Estimate permeability (Section 3.1.7) using the G-function method (Section A.10.i), the h-function 

method (Section A.10.ii), and (if applicable) impulse linear or radial (Sections A.10.iii and A.10.iv). 

Compare the results and check for consistency. Keep in mind that impulse linear estimates are usually 2-5 

times lower than estimates from the other methods. The impulse linear estimate is probably the most 

applicable for predictions of production, and so a downward adjustment may be warranted if an impulse 

linear permeability estimate is not available. 

(12) Optionally, create a plot of estimated aperture versus effective normal stress (Sections 3.1.9 and A.14). 

In advance of a test, it is often useful to estimate the duration of shut-in needed to reach impulse flow. This 

could be done by performing a numerical simulation with code such as ResFrac (McClure and Kang, 2018) 

or by performing a simplified DFIT simulation using the equations in Section A.13. DFIT simulations may 

be performed after the interpretation as a quality control to confirm that the simulation result is consistent 

with the actual data. 

3. Results 

3.1 Example interpretation 

The interpretation procedure is demonstrated in the following example using a DFIT performed in a gas 

well in the Utica/Point Pleasant. Mathematical background is provided in the appendix. It may be useful to 

refer to the appendix while reading this section. 

3.1.1 Initial interpretation with the G-function plot 

Figure 1 shows a plot of pressure and dP/dG versus G-time. For convenience, dP/dG is plotted as positive, 

even though it is actually negative (because pressure is decreasing over time). 
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Figure 1: dP/dG and pressure versus G-time for the Utica DFIT.  

Ideally, dP/dG should be constant as long as the fracture walls are out of contact (Nolte, 1979; Castillo, 

1987; Section A.3). However, this is not usually observed in field DFIT’s, especially if performed in a 

horizontal well. 

At early time, the pressure derivative is elevated by near-wellbore pressure drop. The near-wellbore 

pressure drop is caused by flow through a tortuous path through the cement sheath and axial (longitudinal) 

fractures in the near-wellbore region (Wright, 2000; Weijers et al., 2002; Economides and Martin, 2008; 

Bazan and Meyer, 2015; Cramer et al., 2019). Because of this pressure drop, the pressure in the primary 

fracture away from the well is lower than the pressure measured in the wellbore (Figure 2). Some authors 

distinguish between ‘near-field’ and ‘mid-field’ pressure drop, but in this paper, we lump these processes 

together and refer to them as simply ‘near-wellbore pressure drop.’  

In Figure 1, the literal ISIP is around 11,500 psi. The effective ISIP, 8330 psi, is estimated by identifying 

the point of minimum dP/dG and extrapolating the pressure versus G-time curve back to zero from this 

point. The effective ISIP is an estimate for the pressure in the far-field fracture at shut-in. This is the pressure 

actually present in the fracture that is opening and propagating the crack. 

Figure 2 illustrates the difference between literal ISIP and effective ISIP. A fracture is shown initiating 

longitudinally along the well. Away from the well, a transverse fracture forms, resulting in a complex, 

tortuous fracture geometry that causes a substantial pressure drop that takes at least several minutes to 

dissipate. Figures 13 and 17 from Jung et al. (2016) show numerical simulations of this process. 

 

Figure 2: Schematic of near-wellbore pressure drop between the wellbore and the far-field fracture. 

As the fracture walls come into contact, the magnitude of the pressure derivative begins to increase as the 

fracture compliance and system storage coefficient decrease because of the contact stress (McClure et al., 
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2016; Section A.2). The point of minimum dP/dG is closest to the ‘true’ dP/dG in the far-field fracture 

because it is least disturbed by near-wellbore pressure drop and the contacting of the fracture walls.  

The ‘effective pressure’ is defined as being equal to measured pressure after the point of minimum dP/dG, 

and equal to the linear extrapolation of pressure back to G-time equal to zero prior to the point of minimum 

dP/dG (Figure 1). Effective pressure is an estimate for the pressure that is actually in the fracture. As shown 

in Figure 2, the pressure measured in the well is higher than the ‘effective pressure’ because of the pressure 

drop that occurs between the well and the far-field fracture. 

Conventionally, a period of rapid pressure drop after shut-in has been called ‘tip-extension’ or ‘pressure-

dependent leakoff’ (PDL). It has been believed to be caused by accelerated leakoff or pressure gradient 

along the fracture or at the tip (Barree et al., 2009; Liu et al., 2016). However, it has also been recognized 

that near-wellbore fracture tortuosity is responsible for the huge pressure drops observed after shut-in 

(Bazan and Meyer, 2015; McClure et al., 2016; Barree and Miskimins, 2016). The distinction is that in the 

‘near-wellbore pressure drop’ interpretation, the pressure in the fracture is much lower than the literal ISIP 

(the bottomhole pressure very shortly after shut-in), but in a ‘tip-extension’ or ‘PDL’ interpretation, the 

pressure in the fracture is close to the literal ISIP.  

As pressure drops after shut-in, a few barrels of water will be released from wellbore storage and cause a 

limited amount of tip-extension. If pressure-dependent leakoff is taking place, it will be impossible to 

observe because of the huge pressure changes caused by the dissipation of near-wellbore pressure drop. 

Therefore, while PDL and tip-extension may occur, ‘near-wellbore pressure drop’ is the dominant physical 

process in most DFIT’s and should be considered the primary interpretation.  

In vertical wells, the pressure drop after shut-in is usually (though not always) less pronounced than in 

horizontal wells (Section 3.3). This is consistent with the interpretation that near-wellbore pressure drop is 

the primary cause of the large pressure drops observed after shut-in, and this process is related to fracture 

tortuosity due to fracture reorientation. 

3.1.2 Estimating the minimum principal stress 

As described by McClure et al. (2016) and in Section A.2, the fracture compliance begins to decrease after 

the fracture walls come into contact. The decreasing fracture compliance causes the pressure to drop more 

rapidly (the magnitude of dP/dG increases). McClure et al. (2016) recommend picking the contact pressure 

from a G*dP/dG plot. However, there is not always a unique feature on the G*dP/dG plot that lends itself 

to identifying the contact pressure. It is better to pick the contact pressure from a plot of dP/dG. The contact 

pressure occurs when dP/dG begins to increase from its minimum value. A rule of thumb is to pick the 

contact pressure when there has been a 10% increase from the minimum. When constructing a dP/dG plot, 

the y-axis scale should be chosen so that the minimum and maximum dP/dG can be clearly observed. Large 

early time dP/dG values do not need to be visible on the plot and can go up off the scale. They are related 

to dissipative processes unrelated to fracture contact (Section 3.1.1). 

As explained in Section A.2, the contact pressure is slightly above the minimum principal stress. In 

simulations that match field pressure data, we have found that subtracting approximately 75 psi from the 

contact pressure is a good rule-of-thumb for providing a good estimate of Shmin. However, this is a source 

of uncertainty and is an inherent limitation to stress estimation from fracturing data. As discussed in Section 

A.2, there is not any response in the pressure transient when pressure is actually equal to Shmin. It is known 

that the contact pressure is close to Shmin (and slightly larger), and so stress can be estimated by identifying 

the contact pressure and then making a small downward adjustment to reach Shmin.  

The G-function is derived assuming Carter leakoff, which is strictly valid only if fluid pressure in the 

fracture is constant over time. As pressure decreases during shut-in, deviation from Carter leakoff occurs, 

causing leakoff to occur more slowly than anticipated by the G-function. This overprints a tendency for 

dP/dG to decrease. Ultimately, decreasing leakoff rate is the reason that dP/dG decreases asymptotically to 

zero at late time.   
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Fracture contact causes dP/dG to increase, and deviation from Carter leakoff causes dP/dG to decrease. If 

fracture contact occurs simultaneously with deviation from Carter leakoff, the effects could offset and mask 

the effect of contact on the transient. The problem becomes more significant when effective ISIP minus 

Shmin (net pressure) is a substantial fraction of effective ISIP minus pore pressure. The practical 

consequence is that contact causes a stronger dP/dG response in formations where Shmin and pore pressure 

are relatively further apart. 

In an extreme case, Craig et al. (2017) attempted to estimate stress using a G-function plot of pressure from 

laboratory experiment in which ISIP was double the magnitude of the minimum principal stress (and near-

wellbore pressure drop was negligible). Because net pressure was so large relative to ISIP minus pore 

pressure, by the time that pressure reached the minimum principal stress, the overprint of deviation from 

Carter leakoff was very strong, and a G-function interpretation of the data was not meaningful.  

To solve this problem, a relative stiffness plot can be used to identify the contact pressure, even in cases 

where there is substantial deviation from Carter leakoff (Wang and Sharma, 2018; Section A.9). The plot 

can be constructed solely from the pressure data and an estimate of pore pressure. The plot shows relative 

changes in system stiffness (or storage coefficient) and rigorously accounts for the impact of pressure 

change in the fracture on leakoff rate.  

Figure 3 shows that in the example dataset, there is a distinct increase in relative stiffness at around 8100 

psi. This corresponds to the point in the G-function plot when dP/dG begins to increase from the minimum. 

The Shmin estimate is 8100 – 75 = 8025 psi. 

 

Figure 3: Relative stiffness plot of the Utica DFIT. 

3.1.3 Difference with conventional interpretation 

Conventionally, Shmin has been estimated from plots of G*dP/dG versus G-time, by drawing a line from 

the origin to the tangent to G*dP/dG (Barree et al., 2009). This technique does not have theoretical or 

mathematical justification and yields an inaccurate stress estimate when applied to numerical simulations 

that realistically capture nonlinear evolving fracture stiffness after contact (McClure et al., 2014; 2016). 

Craig et al. (2017) claim to use field and laboratory data to validate the tangent method. McClure (2019) 

describes technical and methodological problems with this study. 

The tangent to G*dP/dG tends to occur very close to the peak in G*dP/dG. It can be shown mathematically 

that the peak in G*dP/dG occurs at the same time as the peak in t*dP/dt. The peak in t*dP/dt has a physical 

meaning – it corresponds to the transition from Carter leakoff to late-time impulse flow (McClure, 2017). 

The timing of the transition is strongly affected by the formation fluid pressure (McClure, 2017). We 

performed sensitivity analysis simulations varying pore pressure and holding Shmin constant. The 

simulations showed that as pore pressure was decreased, the tangent method estimate of Shmin decreased 
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(even though Shmin was being held constant in the simulations). The implication is that the tangent method 

underestimates Shmin more significantly in formations with greater difference between Shmin and pore 

pressure.  

For the DFIT shown in Figure 1, the tangent method (applied to a plot of G*dP/dG) yields a stress estimate 

of 7633 psi, about 400 psi lower than the estimate presented in Section 3.1.2. The implied net pressure from 

the tangent method is nearly triple, implying a much shorter, wider fracture. 

The phenomenon of increasing dP/dG during shut-in (causing a concave up trend on a plot of G*dP/dG) 

has conventionally been ascribed to ‘fracture height recession’ or ‘closure of transverse fractures’ (Barree 

et al., 2009). Jung et al. (2016) performed detailed simulations of these processes. The simulations showed 

that these processes have a second-order effect and cause, at most, minor uncertainty in the stress estimate. 

The bulk of the increase in dP/dG occurs after the fracture walls have come into contact across the entire 

fracture area. 

Some investigators have recently speculated that the contact pressure might be interpreted as the ‘start of 

closure’ and the tangent method pick might be interpreted as the ‘end of closure.’ This interpretation is not 

supported by our modeling results. Simulations show that the great majority of increase in system stiffness 

and dP/dG occurs after contact has occurred along the entire fracture area, and this occurs at a pressure 

substantially higher than the tangent pick. This was observed in simulations performed by McClure et al. 

(2016) and was also observed in the simulations performed for this study.  

3.1.4 Afterflow plot 

Using the estimate of effective ISIP, it is possible to construct an afterflow plot showing the relationship 

between flow rate from the well after shut-in and the pressure difference between the well and the far-field 

fracture (Section A.7).  

Figure 4 shows the afterflow plot for the Utica DFIT. The relationship is well-described by a square root 

curve, consistent with relations proposed in the literature (Equation 22; Wright, 2000). In Figure 4, data 

from the first 15 seconds after shut-in is not shown because it is complicated by water hammer and 

perforation pressure drop. From visual inspection of Figure 4, the near-wellbore coefficient (Equation 22) 

is approximately 1600 psi/bpm^(1/2). Square root scaling of afterflow was observed in the great majority 

of the field DFIT’s reviewed in this study.  

Sometimes, DFIT’s are performed with a rate step-down at the end of injection. This is not necessary 

because an afterflow plot can be used to extract information regarding the near-wellbore pressure drop 

without performing a step-down.  

The near-wellbore pressure drop observed in a DFIT is typically much larger than in field-scale fracturing 

treatments because the tortuous path is scoured out by proppant, acid spearhead, and fracture development 

from progressive injection (Cramer et al., 2019). 
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Figure 4: Afterflow plots for the Utica DFIT. 

3.1.5 Diagnosing impulse transients 

Figure 5 shows a log-log plot of the data. The t*dP/dt curve has the useful property that if Δ𝑃 ∝ 𝑡𝛼, then 

the slope of the curve is equal to 𝛼 (Bourdet et al., 1983). The derivative is taken with respect to actual 

shut-in time. Sometimes, log-log derivative plots are calculated with superposition time, rather than actual 

shut-in time (Marongiu-Porcu et al., 2011, 2014; Liu et al., 2016). This technique is useful for conventional 

well tests, but is unnecessary for interpretation of DFIT’s (McClure, 2017). 

In a DFIT, the log-log plot should only be used to interpret the late-time transient behavior that occurs after 

the hump in t*dP/dt (which occurs at 2000 min in Figure 5). The log-log plot should not be used to interpret 

the transient prior to the hump in t*dP/dt. For example, the derivative curve in Figure 5 is approximately 

flat from about 20 to 200 minutes In a conventional well test, this trend would be interpreted as being radial 

flow. However, the physics of a DFIT are different from a conventional well test, and radial flow from 20 

to 200 min is not the correct interpretation.  

 

Figure 5: Log-log plot for a Utica DFIT. Derivative is taken with respect to actual shut-in time. 

The transient following the hump in t*dP/dt can be described mathematically as an ‘impulse’ test in which 

a volume of fluid is instantaneously injected and then the fluid spreads out and pressure asymptotically 

returns to the initial pressure (Gu et al., 1993; Craig and Blasingame, 2006; McClure, 2017). Impulse linear 

behavior scales with t^(-1/2) (a -1/2 slope on the log-log plot), and impulse radial scales with t^-1 (a -1 

slope on the log-log plot). 
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Figure 5 shows that soon after the peak in t*dP/dt, the transient rolls over into a -1 slope. It is tempting to 

identify this trend as impulse radial flow. However, our simulation results suggest that this apparent radial 

signature should be interpreted as ‘false radial’ – a transient that exhibits t^-1 scaling, but which is not 

actually radial flow. We observed this phenomenon in every simulation that we performed of a DFIT in a 

gas reservoir. The anomalously rapid pressure drop apparently arises from interaction between several 

effects: viscosity contrast between the injection fluid and the gas in the formation, evolving fracture 

stiffness after contact, and the transition from Carter leakoff to impulse flow. In examination of field data 

from gas DFIT’s in the Utica, Marcellus, and Montney, a rolling over from the peak t*dP/dt into an 

approximately -1 slope (without an intervening -1/2 slope) was observed in the majority of cases.  

Simulations predict that if shut-in is performed long enough, the transient settles into a -1/2 slope after the 

-1 slope. This was observed in one of the DFIT’s reviewed in this study, which had an unusually long shut-

in after the peak in t*dP/dG. The -1 slope represents a period of transition from the hump in t*dP/dt to an 

eventual -1/2 slope that indicates linear flow. Because of the low viscosity of the reservoir fluid, the location 

of the -1/2 slope on the log-log plot tends to be significantly lower than the hump in t*dP/dt. Therefore, the 

curve temporarily steepens as it transitions from the peak t*dP/dt to the late-time impulse trend.  

Genuine impulse radial is most likely to be seen in smaller volume tests (<15 bbl) and if permeability 

divided by viscosity is greater than 1 microdarcy/cp.  

In DFIT simulations performed in water saturated or oil saturated formations, the baseline behavior was for 

the transient to roll over into a -1/2 slope, as expected for linear flow. However, sensitivity analysis 

simulations suggest that a variety of non-ideal processes may cause anomalous late-time behavior. In 

simulations performed with multiple closely spaced fractures, pressure interference between the fractures 

caused a variety of different trends after the hump in t*dP/dt, including a false radial trend. Simulations 

suggest that dual porosity behavior in the surrounding reservoir (either pseudosteady state or transient) may 

cause a false radial signature. In real data, a variety of unusual behaviors can be seen in late-time data. We 

do not attempt to interpret these signatures because of there is not enough information to differentiate 

between different possible interpretations. Because of these issues, impulse permeability estimates should 

be compared with the results from the h-function and G-function methods, and if there is large discrepancy, 

the results should be regarded with lower confidence. Performing multiple DFIT’s in the same formation 

in different wells is a good way to test for consistency and identify anomalous results.  

Zanganeh et al. (2018) also performed simulations suggesting the possibility of false radial flow after the 

peak in t*dP/dt. However, their simulations did not consider multiphase effects or multiple fracture strands. 

Our findings are different because under the basic conditions of one fracture strand and single phase flow, 

we did not observe false radial. The cause of the discrepancy is unclear, but may be related to how they 

modeled fracture compliance evolution as the fracture closed. 

Finally, interpreters should keep in mind that poroelastic responses caused by injection or production 

activity in offset wells can occur at substantial distances, causing abrupt and anomalous responses. These 

responses are most likely to affect late-time transients because they have the greatest duration and are 

sensitive to small pressure changes. 

3.1.6 Pore pressure estimation  

The pore pressure can be estimated by linearly extrapolating the pressure trend during impulse flow to 

reciprocal time (or reciprocal square root time) of zero (Section A.6). Extrapolation of the pressure trend in 

Figure 6 yields a pressure estimate of 6825 psi. As discussed in Section 3.1.5, the straight line in Figure 6 

is not actually radial flow. If the transient had extended for much longer, the derivative curve would have 

likely straightened into a linear signature (resulting in a more rapid decrease in pressure than if the trend 

had continued along a t^-1 scaling). Therefore, pore pressure is probably modestly lower than 6825 psi.  
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Figure 6: Pressure versus reciprocal time for a Utica DFIT. 

3.1.7 Permeability estimation from linear flow transients 

Permeability can be estimated using three linear-flow techniques (G-function, h-function, and impulse 

linear) and from impulse radial-flow. In the example transient, impulse linear is not apparent and so cannot 

be used. 

The G-function method calculates leakoff coefficient from dP/dG, and permeability is calculated from 

leakoff coefficient (Nolte, 1979; Valko and Economides, 1999; Section A.10.i). However, in the example 

dataset, dP/dG is constantly changing (Figure 1). Which value of dP/dG should be used? As discussed in 

Section 3.1.1, the minimum dP/dG is the point least disturbed by either near-wellbore pressure drop or 

contacting of the fracture walls. Therefore, this is the point that is most representative of the true value of 

dP/dG in the fracture, and it should be used to estimate leakoff coefficient.  

The calculation requires an assumption of either radial or PKN geometry. In most cases, we recommend 

the radial assumption. The PKN assumption can be used if there is strong evidence of height confinement 

in the layer. In many cases, the diameter calculated from the DFIT interpretation assuming radial geometry 

is less than or close to the ‘height’ that is under consideration for a PKN interpretation. In this case, the 

radial interpretation is the preferred choice.  

To minimize uncertainty caused by unknown fracture geometry, it is preferable to perform DFIT’s with 

relatively low injection volume (5-20 bbl). With larger injection volume, the fracture will be larger and 

more likely to hit stress barriers that limit height (or worse, low stress layers that capture the fracture). 

Because these stress contrasts complicate the interpretation and may be difficult to predict, lower injection 

volume reduces uncertainty. Also, with lower volume, the onset of impulse flow occurs sooner, improving 

the pore pressure estimate and increasing the probability that it will be possible to derive an impulse-flow 

permeability estimate. 

Conversely, Craig and Jackson (2017) recommend pumping DFIT’s with more than 100 bbl. They argue 

that a large fracture is needed to sample a sufficiently large volume of rock. To address concerns regarding 

heterogeneity, we recommend performing multiple DFIT’s in different wells in the same interval and 

checking for consistency. In the field dataset reviewed in this study, the tests were generally performed 

with 5-40 bbl of injection, and we observed good consistency in permeability estimates between 

neighboring wells. This result supports the position that fractures created by 5-40 bbl of injection are large 

enough to sample a representative volume of rock. 

In Section A.10.i, we derive equations that can be used to estimate leakoff coefficient from dP/dG. 

Commonly, the G-function leakoff calculation is performed using the equations derived by Valko and 

Economides (1999). However, these equations neglect the impact of wellbore storage, which is 
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nonnegligible in most DFIT’s. The calculation requires estimation of the fracture size and requires an 

estimate of Shmin. Commonly, equations provided by Valko and Economides (1999) are used to estimate 

fracture size. However, these equations are only valid in the case of zero leakoff and zero wellbore storage. 

If wellbore storage coefficient and leakoff coefficient are set to zero in the equations in Section A.10.i, they 

simplify to the relations from Valko and Economides (1999). 

In the analysis of the Utica DFIT, a PKN geometry is assumed with height of 110 ft. If the analysis is 

repeated with a radial assumption, the diameter is estimated to be 180 ft, and the permeability estimates are 

about 30% lower. 

When applied to the Utica dataset, the G-function estimate for leakoff coefficient is 9.2e-5 ft/min^(1/2). 

The leakoff coefficient can be converted to permeability from the definition of leakoff coefficient for 

‘reservoir dominated flow’ (Equation 19). This assumes that the impact of the filtrate zone is zero. The 

conversion to permeability uses the viscosity and compressibility of the mobile fluid phase in the reservoir, 

not the viscosity and compressibility of the injection fluid. We implicitly neglect any other potential 

multiphase flow effects, such as capillary pressure, and neglect the possibility of pressure dependent 

permeability. Below, we discuss comparison of impulse linear permeability estimates with G-function 

permeability estimates to assess the impact of these additional processes. The G-function permeability 

estimate is 27 nd.  

Next, permeability can be estimated from the h-function method (Section A.10.ii). The h-function integrates 

the effective pressure response using a time-convolution integral of the Carter leakoff solution, accounting 

for the change in pressure over time. Fracture surface area is estimated using a mass balance equation 

accounting for wellbore storage and fluid leakoff. 

The h-function method is related to the method of Mayerhofer et al. (1995). One difference is that 

Mayerhofer et al. (1995) use a convolution integral of the constant rate solution, and then estimate leakoff 

rate, whereas the h-function directly integrates the constant pressure solution. The method of Mayerhofer 

et al. (1995) requires an estimate of fracture area. As with the G-function method, the equations from Valko 

and Economides (1999) are sometimes used to estimate area with the method of Mayerhofer et al. (1995). 

But as described above, this technique neglects wellbore storage and leakoff. The h-function method is also 

related to the technique described by Wang and Sharma (2018). 

Sometimes, fracture size is estimated with the Mayerhofer method by using an equation for predicting the 

time to impulse linear flow (Equation 3 from Craig et al., 2002). This equation is borrowed from 

conventional well test analysis. While it is valid in the context for which it was originally developed 

(Section 6.10.1 from Lee and Wattenbarger, 1996), the physics of a DFIT are very different, and there is 

not a theoretical justification for applying it to predict the timing of impulse linear flow in a DFIT. 

Simulation results indicate that it is often inaccurate. It not even directionally accurate in predicting the 

onset of impulse linear flow. For example, increasing Young’s modulus causes a larger fracture, more 

surface area, earlier fracture contact, and earlier impulse linear flow (because contact accelerates the onset 

of impulse linear, as discussed by McClure, 2017). Yet, the relation from Craig et al. (2002) predicts that 

with more fracture surface area, impulse linear flow will happen later. 

If the method of Mayerhofer et al. (1999) is applied with an accurate estimate of fracture size, then it is 

expected to yield an accurate estimation of permeability. 

When applied to the transient in Figure 1, the h-function permeability estimate is 14 nd. Similar to the G-

function permeability estimate above, this estimate neglects any potential multiphase flow effects. 

Impulse linear is not present in Figure 1. However, if it were present, permeability could be estimated from 

dP/d(t^(-1/2)), using the standard impulse flow solutions (Section A.10.iii). As with the other linear 

methods, surface area can be estimated from a mass balance relation (Section A.10.iii). Unlike the G-

function and h-function methods, the impulse linear permeability estimate is unaffected by multiphase 

leakoff effects or the potential for pressure dependent permeability. It is controlled by the pressure transient 
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in the reservoir away from the filtrate zone. Therefore, this estimate, if available, may be considered more 

representative of reservoir flow behavior and more applicable to reservoir engineering calculations of 

production.  

In our field dataset, impulse linear was present in a substantial percentage of tests. In these tests, we 

observed that the impulse linear permeability estimate was usually 2-5 times smaller than the G-function 

and h-function estimates. Because of this observation, in cases when an impulse linear estimate is not 

available, it may be advisable to reduce the permeability estimate from the G-function or h-function 

methods by 3-fold when used in rate-transient or reservoir engineering calculations. 

Barree et al. (2015a) propose that permeability can be related to the time to closure (as estimated from the 

tangent method), without considering the effect of injection volume, fluid viscosity, Young’s modulus, 

fluid compressibility, or any other parameters. Simulations and comparison with field data indicate that this 

method is often severely inaccurate. We performed sensitivity analysis simulations in which we held 

permeability constant, but varied parameters such as viscosity (difference between gas and oil), modulus, 

and injection volume. The time to ‘closure’ (as picked by the tangent method) varied widely, resulting in 

greatly different permeability estimates from the method of Barree et al. (2015a), even though the 

permeability was the same in all simulations. 

In the Utica DFIT, using the tangent method of picking closure, the time to closure is 1960 min. The 

injection duration is 9.7 min. Therefore, the equation proposed by Barree et al. (2015a) implies that 

permeability is equal to 1.6 microdarcy. This estimate is almost 100 times too high.  

3.1.8 Permeability estimation from radial flow 

As discussed in Section 3.1.5, we believe that the late-time transient in Figure 5 is false radial caused by 

interaction of evolving fracture stiffness after contact with multiphase flow effects. However, for 

comparison, we can use it to estimate permeability. The permeability-height product (kh) is estimated using 

the impulse radial solution (Section A.10.iv). Permeability is estimated by dividing kh by the estimate for 

height. If PKN geometry is assumed, then height is known. If radial geometry is assumed, we use the mass 

balance approach to estimate diameter, and set height equal to diameter.  

The radial permeability estimate from the example dataset is 734 nd. This estimate is roughly 50x greater 

than the estimates from the G-function and h-function methods. The overestimate is consistent with 

expectation from simulation results and comparison with field data, as discussed in Section 3.1.5. 

In this case, the operator had already evaluated, and discarded, the radial permeability estimate. The 

operator’s diagnostics and analysis (performed prior to this DFIT study) suggested that the permeability is 

in the range of 10-20 nd, similar to the values calculated in Section 3.1.7 (Cipolla et al., 2018). 

We observed a false radial signature in the majority of field DFIT’s that we reviewed from a gas reservoir, 

involving tests in the Montney, Marcellus, and Utica. False radial was also observed in every DFIT 

simulation we performed of a gas reservoir. In these cases, using the false radial yielded a large overestimate 

of permeability.  

3.1.9 Estimating average aperture versus effective stress 

Using the technique in Section A.14, it is possible to derive an approximate plot of average aperture versus 

effective stress. Figure 7 shows the inferred relationship for the Utica DFIT. 
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Figure 7: Approximate average aperture versus Shmin minus pressure for the Utica DFIT. 

Figure 7 indicates that the contact pressure (when the system begins to stiffen) occurs when inferred 

aperture is around 2 mm. This is typical of the field data reviewed in this study: the aperture at the contact 

pressure was usually inferred to be in the range of 0.5 – 3 mm.  

It is an important finding that the system begins to stiffen at an aperture on the order of millimeters. This 

finding is consistent with the finding from Branagan et al. (1996) that the residual tilt at late-time was 20% 

of the maximum observed tilt, experimental results from (Suarez-Rivera et al., 2013) showing macroscopic 

complexity in hydraulic fracture geometry, and DFIT analyses from Wang and Sharma (2018).  

McClure et al. (2016) defined ‘fracture closure’ as being equivalent to what we are now calling the ‘contact 

pressure’ – the pressure at which the walls begin to contact and the system stiffens. The problem with the 

definition from McClure et al. (2016) is that it may seem counterintuitive to define ‘closure’ as occurring 

at a point when the average fracture aperture is still substantial.  

3.2 Comparison with simulation 

A numerical simulation was performed based on the parameters inferred from the data (Figure 8). The 

simulation is performed with permeability of 14 nd, Shmin equal to 7975 psi, pore pressure equal to 6900 

psi, and near-wellbore pressure drop coefficient of 1500 psi/bpm^(1/2). The simulations appear very similar 

to the actual data (Figure 1 and Figure 5). The log-log plot indicates a bend into a -1 slope after the hump 

in t*dP/dt. The simulation shows a -1/2 slope after the -1 slope. This is not visible in the data, but the actual 

test terminated prior to 10^4 minutes, and the -1/2 slope in the simulation does not develop until after 10^4 

minutes. 

In order to improve the match to data, it was necessary to vary the W0 and 𝜎𝑛,𝑟𝑒𝑓 parameters from the Willis-

Richards et al. (1995) equation for fracture aperture after contact (Equation 1). This was necessary because 

the shape of the aperture versus effective stress curve has a significant effect on the shape of the transient 

in the period after contact and prior to impulse flow. Permeability, pore pressure, and Shmin were not varied 

to match the data – the parameters were taken directly from the interpretation performed prior to running 

the simulation. 



URTeC 123  17 

 

 

Figure 8: DFIT simulation based on the Utica DFIT. 

3.3 Other field examples 

Figure 9 shows results from a DFIT performed in an oil well in the Wolfcamp shale (WHP is plotted without 

adjustment to BHP). Approximately 3000 psi of near-wellbore pressure drop dissipates in the first 30 

minutes after shut-in. The dP/dG plot shows good indication of contact, and the log-log plot shows a -1/2 

slope after the hump in t*dP/dt. Using a radial fracture geometry, the G-function method yields a 

permeability estimate of 289 nd; the h-function method yields an estimate of 401 nd, and the impulse linear 

trend yields an estimate of 162 nd.   
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Figure 9: G-function and log-log plots for a DFIT performed in the Wolfcamp B. The G-function plot shows measured WHP.  

DFIT’s were performed in all five wells in this pad. All five were landed in the Wolfcamp B. They all show 

thousands of psi of near-wellbore pressure drop and have good indication of contact, as indicated from 

dP/dG increasing from a minimum. The estimates of Shmin are all within 150 psi of each other. The G-

function permeability estimates are: 168 nd, 212 nd, 289 nd, 188 nd, and 638 nd. The h-function 

permeability estimates are: 204 nd, 137 nd, 401 nd, 142 nd, and 619 nd. Three of the DFIT’s show an 

indication of impulse linear. The impulse linear permeability estimates are 64 nd, 162 nd, and 44 nd. None 

of the DFIT’s shown an indication of impulse radial. 

Figure 10 shows a dP/dG plot from a field DFIT in a vertical well the Lower Eagle Ford. As expected from 

a vertical well (in a non-thrust faulting regime), the near-wellbore tortuosity pressure drop is minimal. The 

estimate for Shmin is 12,076 psi. Assuming radial geometry, the G-function method permeability estimates 

is 171 nd, and the h-function method estimate is 126 nd. 

 

Figure 10: dP/dG and pressure versus G-time for a DFIT in a vertical well in the Lower Eagle Ford. 

4. Discussion 

4.1 Tests without a clear pick for contact pressure 

The clarity of the pick for contact pressure can be assessed from the separation between the minimum and 

maximum dP/dG. If there is not good separation, a clear pick may also be possible if an inflection can be 

identified from the relative stiffness plot. Nevertheless, in some tests, a clear pick is not possible. Figure 11 

shows an example of a test with monotonically decreasing dP/dG and a smoothly, gradually increasing 

relative stiffness.  
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Figure 11: G-function plot and relative stiffness plot for a DFIT performed in the Middle Bakken (in Figure 11a, blue is pressure and red is 

dP/dG). It is not possible to identify the contact pressure or estimate Shmin. 

By performing simulations under a variety of conditions, we identified processes that can cause 

monotonically decreasing dP/dG: 

1. If a significant volume of fluid has been pumped into the formation prior to the DFIT, such that the 

DFIT involves reinjection into a pre-existing, previously-created hydraulic fracture. 

2. If injection occurs directly into a highly conductive natural fracture. 

3. If the hydraulic fracture intersects a highly conductive natural or pre-existing hydraulic fracture. 

4. If the matrix permeability divided by formation fluid viscosity is sufficiently high (>0.01-0.1 

md/cp). 

5. If near-wellbore pressure drop is very severe, masking the pressure transient in the far-field 

fracture. 

For the first four scenarios listed above, dP/dG is monotonic because the fracture walls contact almost 

instantly after shut-in (or perhaps, never fully separated). If injection reopens a pre-existing hydraulic or 

natural fracture, there is not any ‘toughness’ that must be overcome in order to propagate the effective ‘tip’ 

of reopening. As a result, the fracture opens just enough to conduct flow. After shut-in, the walls contact 

very rapidly, and fluid continues to flow outward into the rest of the pre-existing fracture. In scenario #3, 

the fracture walls contact rapidly because fluid flows out into the pre-existing fracture. In scenario #4, the 

fracture walls contact rapidly because growth is limited by leakoff, rather than resistance to propagation at 

the tip. In scenario #5, the pinch-point caused by near-wellbore pressure drop is so severe that the real 

pressure transient in the hydraulic fracture is not observed.  

If the test in Figure 11 was in a vertical well, it might be justifiable to assume that there is not any near-

wellbore tortuosity, and the ISIP could be taken as an estimate for Shmin (because of the 'rapid contact’ 

interpretations #1-#4). But because this test is in a horizontal well, it is unclear whether to interpret that the 

fracture walls have rapidly contacted or to interpret that near-wellbore pressure drop is obscuring the true 

transient (or a combination of both). Because of these uncertainties, a test in a horizontal well without clear 

evidence of a contact pressure cannot be confidently interpreted. In either vertical or horizontal wells, it 

will be impossible to estimate fracture area and permeability because the net pressure cannot be estimated. 

It might be possible to estimate permeability from impulse radial flow. If impulse linear or radial flow is 

reached, it will be possible to estimate pore pressure. 

4.2 Impact of the permeability estimate 

Rate-transient analysis (RTA) of production data in shale typically indicates linear flow. By matching the 

linear flow equation to the production data, it is possible to derive an estimate for 𝐴√𝑘. However, without 
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an independent estimate for permeability, the RTA match is nonunique. With a DFIT permeability estimate, 

it is possible to uniquely estimate effective fracture area from the 𝐴√𝑘 value taken from the RTA.  

In the Utica dataset, the false/invalid radial flow evaluation and the method from Barree et al. (2015a) yield 

a 50-100-fold overestimate of permeability. Holding 𝐴√𝑘 constant, this implies that the effective fracture 

area (or if height is assumed, effective fracture length) will be underestimated by a factor of 7-10.  

The analysis provided by Barree et al. (2015b) may be an example of the consequences of overestimated 

permeability in a gas reservoir. They analyze a gas shale well with DFIT-derived permeability and an RTA 

match to production data. They estimate the effective fracture length to be just 35 ft. This estimate seems 

implausibly low. 

To test the impact on net-present value, we history matched ResFrac simulations to the Utica well 

production data, using either 1 microdarcy or 20 nd as the permeability estimate. Then, we performed a 

series of simulations with different cluster and well spacing and performed simple economic calculations 

of net-present value. The high and low permeability models yielded different optimal designs. Applying 

the optimal design from the ‘high permeability’ model to the ‘low permeability’ model resulted in large 

reduction in net present value. The details of this comparison will be shown in a separate, standalone paper. 

The analysis shows that improved accuracy from the DFIT permeability estimate can improve fracture 

design and well placement and significantly increase return on investment. 

5. Conclusions 

By integrating detailed numerical simulations, field data, operator experience, and mathematical analysis, 

we developed a step-by-step procedure for estimating stress, permeability, and pore pressure from DFIT’s 

in low permeability formations.  

‒ Near-wellbore pressure drop typically causes 1000s of psi of pressure drop at early time in DFIT’s 

in horizontal wells. If this occurs, then for tens of minutes after shut-in, pressure measured in the 

well is much higher than the pressure in the far-field hydraulic fracture. The effective ISIP (an 

estimate for the pressure in the fracture at shut-in) can be estimated from a G-function plot.  

‒ Analogous to the g-function, the h-function is proportional to the cumulative volume of fluid leaked 

off from the fracture since the start of injection. Unlike the g-function, the h-function accounts for 

deviation from Carter leakoff as the pressure in the fracture decreases. The h-function is useful in 

mathematical derivations used for permeability estimation and for the construction of a relative 

stiffness plot. 

‒ The G-function and h-function methods can be used to estimate permeability from the data prior to 

impulse flow. We derive mass balance equations for jointly inferring permeability and fracture size. 

Unlike equations commonly used in the literature (Valko and Economides, 1999), these equations 

consider wellbore storage and leakoff.  

‒ Impulse linear flow can be used to estimate permeability as long as fracture area can be estimated. 

Similar to the G-function and h-function methods, permeability can be jointly estimated with area 

using a mass balance equation.  

‒ Simulations show that a variety of processes can cause the appearance of impulse radial, even in 

situations where flow is not actually radial. This problem is especially severe in gas shale, where 

false radial is common in both simulation results and in real data. Analysis based on false radial 

flow typically leads to a 10-100x overestimate of permeability. Genuine radial is most likely to 

occur in low volume DFIT’s and in formations with permeability divided by viscosity greater than 

1 microdarcy/cp. 

‒ The G-function and h-function permeability estimates are usually similar. The G-function method 

is more sensitive to error due to elevated dP/dG from near-wellbore pressure drop. With field data, 

impulse linear permeability estimates are usually 2-5 times lower than the G-function and h-function 

methods. The G-function and h-function estimates may be impacted by multiphase effects or by 
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pressure dependent permeability. Therefore, the impulse linear flow permeability estimate is 

typically preferred for reservoir engineering calculations. If impulse linear flow is not available, the 

G-function or h-function methods may be adjusted downward by about 3-fold. There is moderate 

uncertainty in the permeability estimates, and modelers should have reasonable freedom to modify 

permeability if needed to match production data. 

‒ The magnitude of the minimum principal stress can be estimated by identifying the ‘contact 

pressure’ which is the pressure at which the fracture walls come into contact and the system begins 

to stiffen. The minimum principal stress can be estimated to be approximately 75 psi below the 

contact pressure. This is effectively the ‘compliance method’ of picking ‘fracture closure’ (McClure 

et al., 2016). However, we have defined the new term ‘contact pressure’ to avoid confusion with a 

variety of other definitions of ‘closure.’ Rather than using a plot of G*dP/dG (as recommended by 

McClure et al., 2016), we recommend identifying the contact pressure from a plot of dP/dG or from 

a relative stiffness plot. 

‒ It is possible to approximately infer the relationship between aperture and effective stress. Field data 

shows that the average fracture aperture is between 0.5-3 mm at the contact pressure, and continues 

to be substantial when the fluid pressure is equal to the minimum principal stress. This is evidently 

the manifestation of the roughness of in-situ hydraulic fractures. 

‒ DFIT permeability estimates have direct implication for fracture design and can significantly impact 

economic returns. 
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List of variables 

A: fracture surface area; does not count both sides of the fracture – ie, defined so that a fracture with sides 

of length 1 ft has area of 1 ft^2 (ft^2; m^2) 

cfl: compressibility of the fluid in the fracture (psi^-1; MPa^-1) 

𝐶𝑓: fracture conductivity (md-ft; m^3) 

𝐶𝑓𝐷: dimensionless fracture conductivity  

CL: leakoff coefficient (ft/min^0.5; m/s^0.5) 

Cnw: near-wellbore pressure drop coefficient (psi/(bpm)^.5; MPa/(m^3/s)^.5) 

Ct: total system storage coefficient (bbl/psi; m^3/MPa) 

ct: total formation compressibility (psi^-1; MPa^-1) 

Cw: wellbore storage coefficient (bbl/psi; m^3/MPa) 

E’: Plane strain Young’s modulus 

FL: linear flow time function (dimensionless) 

G: G-function (dimensionless) 

Gc: G-function at closure (dimensionless) 

g: g-function (dimensionless) 

g0: g-function at shut-in (dimensionless) 

H: H-function (psi-min^.5; MPa-s^.5) 

h: h-function (psi-min^.5; MPa-s^.5); or formation height (ft; m) 

hf: fracture height (ft; m) 

k: permeability (md; m^2) 

Lf: fracture length (ft; m) 

m: mass of fluid in the wellbore/fracture system (lbs; kg) 

P: fluid pressure (psi; MPa) 

P0: effective fluid pressure at shut-in (estimate for effective ISIP) (psi; MPa) 

Peff: effective fluid pressure (estimate for fluid pressure in the fracture) (psi; MPa) 

𝑃𝐼𝑆𝐼𝑃,𝑒𝑓𝑓: effective ISIP (psi; MPa) 

Pres: reservoir fluid pressure (psi; MPa) 

Pw,init: fluid pressure at the beginning of injection (psi; MPa) 

Q: volumetric flow rate (bpm; m^3/s) 

Rf: fracture radius (ft; m) 

rw: wellbore radius (ft; m) 

s: skin factor (unitless) 

Sf,c: stiffness of a closed crack (psi/ft; MPa/m) 

Sf,o: stiffness of an open crack (psi/ft; MPa/m) 

Srel: relative stiffness (min^-.5; s^-.5) 

St: total system stiffness (psi/bbl; MPa/m^3) 

t: time (various units; s) 

te: duration of injection (min; s) 

V: volume of the wellbore/fracture system (bbl; m^3) 

Vf: volume of fluid in the fracture (bbl; m^3) 

Vinj: volume of fluid injected (bbl; m^3) 

VL: volume of fluid leaked off from the fracture since the start of injection (bbl; m^3) 

𝑉𝐿𝑠: volume of fluid leaked off from the fracture since shut-in (bbl; m^3) 

Vslug: volume of fluid injected as part of a slug test (bbl; m^3) 

W: fracture aperture (inches; m) 

W0: fracture aperture when the walls come into contact (inches; m) 

W0,max: numerical parameter; maximum allowed value of W0 in an element (inches; m)  

𝛽: near-wellbore pressure drop exponent (unitless) 

Δ𝑃𝑛𝑤: pressure drop due to near-wellbore pressure drop (psi; MPa) 
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Δ𝑡: shut-in duration (min; s) 

Δ𝑡𝑝𝑒𝑎𝑘: shut-in duration at the peak value of G*dP/dG (min; s) 

Δ𝜎𝑛,𝑏𝑎𝑐𝑘: additional normal stress on the fracture due to opening (psi; MPa) 

𝜂: fracturing efficiency (dimensionless) 

𝜇: fluid viscosity (cp; MPa-s) 

𝜎𝑛: normal stress (psi; MPa) 

𝜎𝑛,𝑐: contact stress (psi; MPa) 

𝜎𝑛,𝑟𝑒𝑓: effective normal stress at which the aperture has decreased 90% from W0 (psi; MPa) 

𝜏: integration variable for time (min; s) 

𝜙: porosity (unitless) 

 

A. Appendix  

This appendix reviews the physics of a DFIT pressure transient and provides mathematical derivation of 

interpretation techniques. All equations are provided in consistent (SI) units. 

A.1 Decomposing the pressure derivative 

From the chain rule, the derivative of pressure with respect to time can be written as: 

𝑑𝑃

𝑑𝑡
=

𝑑𝑃

𝑑𝑚

𝑑𝑚

𝑑𝑡
,           (2) 

where P is pressure, m is mass of fluid in the wellbore/fracture system, and t is time. Starting from Equation 

2, McClure et al. (2016) showed that for a slightly compressible fluid: 

𝑑𝑃

𝑑𝑡
=

1

𝐶𝑡

𝑑𝑉

𝑑𝑡
,           (3) 

where 
dV

dt
 is the leakoff rate and Ct is the system storage coefficient (the volume of fluid released from the 

system per increment of pressure). Equation 3 provides a framework for understanding DFIT pressure 

transients. Changes in slope are caused by changes in either system storage coefficient or leakoff.  

Equation 2 assumes that a single value of pressure can be used for the entire fracture. This implicitly 

assumes that the fracture is effectively infinite conductivity and neglects perforation and near-wellbore 

pressure drop. The effect of finite fracture conductivity is discussed in Section A.5. 

A.2 System storage and contact 

McClure et al. (2016) showed that the system stiffness (and its reciprocal, system storage) can be written 

as: 

𝑆𝑡 =
1

𝐶𝑡
=  

1

𝐶𝑤+
𝐴

𝑆𝑓
+𝑉𝑓𝑐𝑓𝑙

.          (4) 

where Cw is the wellbore storage coefficient, A is the area of the fracture, Sf is the fracture stiffness (equal 

to the reciprocal of the derivative of average fracture aperture with respect to pressure), Vf is the volume of 

the fracture, and cfl is the compressibility of the fluid in the fracture. Equation 4 is valid during injection, 

and after shut-in: before, during, and after contact. Raaen et al. (2001) performed a similar decomposition 

of system stiffness for application to pumpin/flowback tests. 

The wellbore storage coefficient has two components – the compressibility of the fluid in the well and the 

compressibility of the wellbore volume itself. Wellbore storage coefficient can be estimated directly from 

the injection data. At the beginning of injection, prior to breakdown or fracture opening, a plot of pressure 

versus cumulative injection volume forms a straight line. The slope is equal to the wellbore storage 

coefficient.  
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In these derivations, volumes and areas are written in terms of the full fracture volume and area, not the 

volume and area of one-wing of the fracture. Authors sometimes define terms using one-wing of the 

fracture. We prefer not to follow this convention because fractures can propagate radially, with complex 

geometry, or asymmetrically, and so in the general case it is not always meaningful to refer to ‘one-wing’ 

of a fracture. Also, sometimes authors define ‘area’ by counting both sides of the fracture. This is not the 

convention used in this paper. We define area according to the convention that a square fracture with length 

and height of 1 ft has an area of 1 ft2.  

We define the ‘contact pressure’ as being the pressure at which the fracture walls come back into contact 

and the system begins to stiffen. Prior to contact, the fracture stiffness can be written from an analytical 

solution based on the geometry of the fracture and the mechanical properties of the rock. The two common 

geometry assumptions are radial and PKN. PKN fracture geometry applies to a fracture that has length 

much greater than height.  

If the fracture is radial, the stiffness is (Table 2-2 from Ehlig-Economides and Economides, 2000): 

𝑆𝑓,𝑜(𝑟𝑎𝑑𝑖𝑎𝑙) =
3𝜋𝐸′

16𝑅𝑓
,          (5) 

where Sf,o is the stiffness of an open crack, E’ is the plane strain Young’s modulus, and Rf is the radius. If 

the fracture has PKN geometry, the stiffness is written as: 

𝑆𝑓,𝑜(𝑃𝐾𝑁) =
2𝐸′

𝜋ℎ𝑓
,          (6) 

where hf is the assumed fracture height. Once contact occurs, the fracture begins to stiffen because of contact 

stress created by the contacting fracture walls. The total stiffness can be written as (McClure et al., 2016): 

𝑆𝑓 = 𝑆𝑓,𝑜 + 𝑆𝑓,𝑐,          (7) 

where Sf,c is the additional stiffness due to contact. The contact stiffness is equal to: 

𝑆𝑓,𝑐 =
1

𝑑𝑊

𝑑𝑃

,           (8) 

where W is the fracture aperture (calculated as a function of effective normal stress). Sometimes, authors 

differentiate between fracture void aperture and hydraulic aperture (McClure, 2012), but in this work, they 

are assumed to be equal. 

Prior to contact, Sf,c is equal to zero. After contact, the parameter Sf,c begins to increase and asymptotically 

approaches infinity as effective normal stress approaches infinity. Sf,c can be calculated from an empirical 

relation between aperture and effective normal stress.  

The resulting relation for contact stiffness is: 

𝑆𝑓,𝑐 =
𝜎𝑛,𝑟𝑒𝑓

9𝑊0
 (1 +

9(𝜎𝑛−𝑃)

𝜎𝑛,𝑟𝑒𝑓
)

2

.         (9) 

Equation 9 indicates that 𝑆𝑓,𝑐 is nonzero at the moment of contact, which implies a discontinuous jump in 

stiffness at the point of contact. It is unclear whether this is realistic. In future work, it would be worthwhile 

to explore alternatives to Equation 1 that allow a smooth increase from contact stiffness from zero as contact 

occurs.  

Even after ‘contact’ has occurred across the entire fracture, the walls of the fracture are not literally touching 

everywhere along the fracture. Instead, asperities cause solid-to-solid contact across only a fraction of the 

fracture area. As effective stress increases, the percentage of area with solid-to-solid contact increases. This 

process is implicit to Equation 1. The equation to be used to capture average fracture aperture without 

performing detailed modeling at the scale of individual asperities. As an example of the alternative 

approach, Vogler et al. (2018) performed small-scale modeling that captures individual asperities. 
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Prior to contact, force balance requires that fracture effective normal stress is equal to zero (Crouch and 

Starfield, 1983). After contact, the effective normal stress becomes compressive and equal to the contact 

stress created by the contacting of the fracture walls. Contact stress can be calculated by solving for effective 

normal stress in a constitutive equation. Using Equation 1, contact stress is: 

𝜎𝑛 − 𝑃 = 𝜎𝑛,𝑐 =
𝜎𝑛,𝑟𝑒𝑓 

9
 (

𝑊0

𝑊
− 1).        (10) 

Because of fracture roughness, the fracture aperture is not zero at contact. This residual aperture creates a 

backstress so that the normal stress is slightly above Shmin when the walls come into contact. The 

backstress can be calculated as: 

Δ𝜎𝑛,𝑏𝑎𝑐𝑘 = 𝑊𝑆𝑓,𝑜.          (11) 

The fluid pressure is equal to Shmin when the backstress is equal to the contact stress: 

𝑊𝑆𝑓,𝑜 =
𝜎𝑛,𝑟𝑒𝑓 

9
 (

𝑊0

𝑊
− 1).         (12) 

There is a discrete change in the physics at the point when the walls come into contact – the contact stress 

begins to increase from zero. However, there is no meaningful change in the physics or discernable signal 

in the transient when pressure is equal to Shmin. Because there is not a signal in the data when pressure 

reaches Shmin, the difference between contact pressure and Shmin is a source of uncertainty when 

estimating Shmin. 

Craig and Blasingame (2006) and Craig et al. (2017) define the total storage in a piece-wise fashion – 

neglecting different parts of the storage at different points during the test. In their definition, the 
𝐴

𝑆𝑓
 term is 

negligible after ‘closure,’ implying that Sf is infinite. This assumption does not appear to be well-founded. 

With realistic values in Equation 4, the 
𝐴

𝑆𝑓
 term is not negligible until pressure is hundreds or thousands of 

psi below Shmin.  

A.3 G-function analysis 

The G-function (also called G-time) is a monotonic transformation of Δ𝑡 (shut-in time). Nolte (1979) 

derived the G-function (also called G-time) such that, under reasonable assumptions, the cumulative leakoff 

after shut-in is linearly proportional to G-time. A related function, the g-function, is derived to be linearly 

proportional to the cumulative leakoff from the start of injection (Castillo, 1987; Gulrajani and Nolte, 2000): 

𝑉𝐿(Δ𝑡) = 2𝐴𝐶𝐿√𝑡𝑒𝑔(Δ𝑡).          (13) 

The G-function is defined as: 

𝐺(Δ𝑡) =
4

𝜋
(𝑔(Δ𝑡) − 𝑔(Δ𝑡 = 0)).        (14) 

The cumulative leakoff after shut-in is defined as: 

𝑉𝐿𝑠(Δ𝑡) = 2𝐴𝐶𝐿√𝑡𝑒(𝑔(Δ𝑡) − 𝑔(0)) =
𝜋

2
𝐴𝐶𝐿√𝑡𝑒𝐺(Δ𝑡).      (15) 

The exact form of the G and g functions depend on assumptions about fracture growth. However, there is 

little practical difference between the different forms of the g and G-functions. For example, within 

reasonable ranges, the cumulative leakoff at shut-in can be bounded with 𝑔0 = 𝑔(Δ𝑡 = 0) is a number in 

the narrow range between 4/3 and 
𝜋

2
 (Equation 30 of the appendix from Gulrajani and Nolte, 2001). The 

most common form of the g-function is: 

𝑔(Δ𝑡) =
4

3
[(1 +

Δt

te
)

1.5
− (

Δt

te
)

1.5
].        (16) 
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Because cumulative leakoff after shut-in is proportional to G-time, the derivative of cumulative leakoff 

with respect to G-time is equal to a constant. In the ideal case, fracture stiffness is constant prior to contact, 

and so the total system storage (and stiffness) are also constant prior to contact. Therefore, from Equation 

3, a plot of pressure versus G-time should form a straight line (Castillo, 1987): 

𝑑𝑃

𝑑𝐺
=

1

𝐶𝑡

𝑑𝑉

𝑑𝐺
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.          (17) 

If fracture geometry and mechanical properties of the rock are known, then Equation 17 can be solved for 

the leakoff coefficient (Nolte, 1979; Castillo, 1987; Gulrajani and Nolte, 2000).  

If the fracture formed instantaneously during injection, then the G-function would be equivalent the square 

root of time. The square root scaling arises because the G-function assumes Carter leakoff. The G-function 

is not exactly equal to the square root of time because accounts for the progressive growth of the fracture 

during injection. As a result, the duration of leakoff is a function of position along the fracture area. 

Equation 24 from McClure (2017) provides a succinct derivation of the G-function for the special case that 

the fracture grows linearly with respect to time during injection. 

A.4 Deviation from Carter leakoff 

The G-function is derived based on the assumption of Carter leakoff (Nolte, 1979; Howard and Fast, 1957). 

For the simple case with no filtrate zone or filtercake, Carter leakoff can be derived as the solution the 1D 

diffusivity equation with a Dirichlet (constant pressure) boundary condition (Bird et al., 2007): 

𝑉𝐿𝑠 = 4𝐴√Δ𝑡(𝑃 − 𝑃𝑟𝑒𝑠)√
𝜙𝑐𝑡𝑘

𝜋𝜇
= 4𝐴𝐶𝐿√Δ𝑡.       (18) 

The leakoff coefficient is defined from Equation 18 as: 

𝐶𝐿 = (𝑃 − 𝑃𝑟𝑒𝑠)√
𝜙𝑐𝑡𝑘

𝜋𝜇
.          (19) 

The leakoff coefficient can be generalized to include the effect of filtrate invasion and filtercake formation. 

Filtercake does not form during a DFIT because the injection is performed with water. Filtrate invasion is 

minor in DFIT’s because of the low permeability and relatively large fracture surface area.  

The G-function assumption of Carter leakoff is violated during a DFIT because pressure decreases over 

time (Castillo, 1987). As long as the change in the fracture pressure is relatively small relative to the 

difference between ISIP (initial shut-in pressure) and the formation fluid pressure, then the leakoff rate is 

reasonably described by Carter leakoff. But eventually, the fluid pressure drops sufficiently far that there is 

significant deviation from Carter leakoff (Castillo, 1987). The leakoff rate reduces relative to the rate that 

would have occurred if Carter leakoff had continued. Because 
𝑑𝑉

𝑑𝐺
 is constant during Carter leakoff, the 

deviation causes 
𝑑𝑉

𝑑𝐺
 to decrease (because leakoff occurs more slowly than if Carter leakoff had continued), 

and so the derivative of pressure with respect to G-time begins to decrease. This causes dP/dG to decrease 

and G*dP/dG to bend downward. The peaking of G*dP/dG and t*dP/dt occurs during the progressive 

transition from Carter leakoff to late-time impulse behavior (McClure, 2017). 

A.5 The effect of closure 

Equation 3 provides a conceptual framework for understanding the effect contact between the fracture 

walls. When the fracture walls come into contact, stiffness begins to increase (Equation 7). Increasing 

stiffness causes dP/dG to increase. Based on this insight, contact can be identified as occurring when dP/dG 

begins to increase (McClure et al., 2016).  

Equation 3 depends on the assumption that pressure in the fracture can be described with a single parameter, 

P. This is valid if the fracture is approximately infinite conductivity. The dimensionless fracture 

conductivity is defined as: 
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𝐶𝑓𝐷 =
𝐶𝑓

0.5𝑘𝐿𝑓
,           (20) 

where 𝐶𝑓 is fracture conductivity and Lf is fracture length. Fractures are ‘infinite conductivity’ when 𝐶𝑓𝐷 is 

above approximately 300 (some authors use a lower threshold). From the cubic law, fracture conductivity 

is equal to (Witherspoon et al., 1980): 

𝐶𝑓 =
𝑊3

12
.           (21) 

For a fracture with half-length of 150 ft and matrix permeability of 100 nanodarcies, the fracture will be 

infinite conductivity as long as fracture aperture is greater than just 25 microns (equivalent to conductivity 

around 1 md-ft). Zhang et al. (2013) measured the conductivity of unpropped fractures in the Barnett Shale 

and found that conductivity remained above 1 md-ft until effective normal stress exceeded 1000s of psi. 

For unaligned fractures, the conductivity was even higher, and in-situ, fractures are probably rougher than 

in small-scale fractures induced in the lab.  

For permeability on the order of microdarcies or millidarcies, it becomes less likely that the fracture will 

remain infinitely conductive after contact. If dimensionless fracture conductivity drops sufficiently rapidly 

with contact, then it is conceivable that nonnegligible pressure gradient could develop in the fracture. If this 

occurs, then contact would cause an apparent reduction in the ‘leakoff rate,’ 
𝑑𝑉

𝑑𝐺
, and this could potentially 

cause the pressure derivative to decrease, rather than increase, with contact.  

In the worst case, stiffness and leakoff rate could change in approximately equal amounts and result in no 

change in 
𝑑𝑃

𝑑𝐺
 with contact. This scenario is probably uncommon because it requires coincidental equality 

of two opposing effects, but probably occurs occasionally. Decreasing 
𝑑𝑃

𝑑𝐺
 with contact (due to decreased 

dimensionless fracture conductivity) has been confirmed by numerical simulation (McClure et al., 2016). 

If this occurred, 
𝑑𝑃

𝑑𝐺
 may decrease monotonically after contact. If the fracture begins to become finite 

conductivity, it is possible that the conductivity could be spatially variable along the fracture area. 

A.6. Impulse flow 

Craig and Blasingame (2006) pointed out that the late time behavior of a DFIT can be described with 

impulse flow solutions from conventional well test analysis. The impulse flow solution can be found by 

taking the dimensionless time derivative of the nondimensionalized solution for constant-rate injection 

(Houze et al, 1988; Ayoub et al., 1988; Gu et al, 1993). For example, constant rate injection into an infinite 

conductivity fracture yields a scaling of Δ𝑃 ∝ (Δ𝑡)
1

2 (Gringarten et al., 1974). Therefore, the impulse 

solution for an infinite conductivity fracture is Δ𝑃 ∝ (Δ𝑡)−
1

2. Late-time impulse transients can be used to 

infer permeability and fluid pressure (Sections A.10.iii and 3.1.6). 

A.7 Near-wellbore pressure drop 

In field DFIT’s in horizontal wells, there is usually always a period of rapid pressure drop immediately after 

shut-in. At very early time, this pressure drop is due to the end of wellbore and perforation friction (if the 

well is perforated). But subsequently, there can be a period of rapid pressure drop that may last tens of 

minutes or longer. During this time, pressure commonly drops by 1000s of psi. This behavior is apparent 

in most of the field data reviewed in this study.  

Near-wellbore pressure drop can be modeled as a pressure difference between the wellbore and the fracture 

(Wright, 2000):  

Δ𝑃𝑛𝑤 = 𝐶𝑛𝑤𝑄𝛽,          (22) 

where 𝐶𝑛𝑤 is a constant, Q is the volumetric flow rate from the well into the fracture, and 𝛽 is an exponent 

(typically equal to 0.5).  
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After shut-in, flow at the wellhead is zero, but fluid continues to flow into the formation because of wellbore 

storage. The flow rate Q can be estimated as: 

𝑄 = 𝐶𝑤
𝑑𝑃

𝑑𝑡
.            (23) 

Δ𝑃𝑛𝑤 can be estimated from the equation: 

Δ𝑃𝑛𝑤~𝑃 − 𝑃𝑒𝑓𝑓,           (24) 

where P is the bottomhole pressure of the well and Peff is the ‘effective’ pressure estimated by extrapolating 

back to G-time equal to zero from the point of minimum dP/dG (Section 3.1.1). Peff is an estimate for the 

fluid pressure in the fracture, on the ‘other side’ of the near-wellbore pressure drop from the wellbore. 

These relations make it possible to plot the difference between well pressure and fracture pressure versus 

volumetric flow rate and directly infer 𝐶𝑛𝑤.    

A.8 The h-function 

Nolte (1979) derived the G-function to be proportional to the cumulative leakoff volume after shut-in and 

derived the g-function to be proportional to the total volume of fluid leaked off after the start of injection. 

Both functions are derived assuming Carter leakoff. Following a similar approach, it is convenient to define 

an ‘h’ function that is proportional to the cumulative leakoff volume from the start of injection, but unlike 

the g-function, accounts for deviation from Carter leakoff caused by pressure change over time. This is 

accomplished using a time-convolution integral of the one-dimensional constant pressure solution (given 

by Equation 18). This approach is related to the method described by Mayerhofer and Economides (1993) 

and Mayerhofer et al. (1995), who proposed a procedure for estimating permeability using an 

approximation to the leakoff rate and then a convolution integral of the constant rate solution (Section 

A.3.vii), and is also related to the relative stiffness relations developed by Wang and Sharma (2018).  

The cumulative leakoff from the start of pumping can be estimated as: 

𝑉𝐿 = 4𝐴√
𝑘𝜙𝑐𝑡

𝜋𝜇
 ∫

(𝑃(𝜏)−𝑃𝑟𝑒𝑠)

𝑑𝜏
√Δ𝑡 + 𝑡𝑒/2 − 𝜏𝑑𝜏

Δ𝑡+𝑡𝑒/2

0
= 4𝐴ℎ(Δ𝑡)√

𝑘𝜙𝑐𝑡

𝜋𝜇
 .   (25) 

Thus, the h-function is defined as: 

ℎ(Δ𝑡) = ∫
(𝑃(𝜏)−𝑃𝑟𝑒𝑠)

𝑑𝜏
√Δ𝑡 + 𝑡𝑒/2 − 𝜏𝑑𝜏

Δ𝑡+𝑡𝑒/2

0
.       (26) 

If pressure versus time is known, cumulative leakoff can be calculated as: 

𝑉𝐿(Δ𝑡𝑘) ≈ 4𝐴√
𝑘𝜙𝑐𝑡

𝜋𝜇
 [(𝑃0 − 𝑃𝑟𝑒𝑠)√Δ𝑡𝑘 +

𝑡𝑒

2
+ ∑ (𝑃𝑖 − 𝑃𝑖−1)𝑘

𝑖=1 √Δ𝑡𝑘 − Δ𝑡𝑖].   (27) 

The h-function is calculated as: 

ℎ(Δ𝑡𝑘) ≈ (𝑃0 − 𝑃𝑟𝑒𝑠)√Δ𝑡𝑘 +
𝑡𝑒

2
+ ∑ (𝑃𝑖 − 𝑃𝑖−1)𝑘

𝑖=1 √Δ𝑡𝑘 − Δ𝑡𝑖.     (28) 

Analogous to the G-function, an H-function can be defined that is proportional to the volume of fluid leaked 

off since shut-in: 

𝐻(Δ𝑡) = ∫
(𝑃(𝜏)−𝑃𝑟𝑒𝑠)

𝑑𝜏
√Δ𝑡 + 𝑡𝑒/2 − 𝜏𝑑𝜏

Δ𝑡+𝑡𝑒/2

𝑡𝑒/2
.       (29) 

The H-function is calculated as: 

𝐻(Δ𝑡𝑘) ≈ (𝑃0 − 𝑃𝑟𝑒𝑠)(√Δ𝑡𝑘 +
𝑡𝑒

2
− √

𝑡𝑒

2
) + ∑ (𝑃𝑖 − 𝑃𝑖−1)𝑘

𝑖=1 √Δ𝑡𝑘 − Δ𝑡𝑖.    (30) 

Cumulative leakoff after shut-in can be written as: 
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𝑉𝐿𝑠(Δ𝑡𝑘) ≈ 4𝐴𝐻(Δ𝑡𝑘)√
𝑘𝜙𝑐𝑡

𝜋𝜇
 .         (31) 

The h-function can be calculated directly from pressure versus time data and an estimate of the reservoir 

pressure, 𝑃𝑟𝑒𝑠. Estimation of reservoir pressure is discussed in Section 3.1.6. 

Unlike the G-function, Equation 25 does not rigorously account for the effect of the propagation of the 

fracture over time. Instead, leakoff during injection is approximated by assuming the fracture formed 

instantaneously after a duration of injection of te/2. Although simple, this is a reasonably accurate 

approximation. Equation 25 implies that the volume of fluid leaked off at shut-in is equal to: 

𝑉𝐿(Δ𝑡 = 0) ≈ 4𝐴√
𝑘𝜙𝑐𝑡

𝜋𝜇
 [(𝑃0 − 𝑃𝑟𝑒𝑠)√

𝑡𝑒

2
] = 2𝐴𝐶𝐿√𝑡𝑒 √2.     (32) 

The factor √2 in Equation 32 is analogous to 𝑔(Δ𝑡 = 0) = 𝑔0 in Equation 13 (which is taken from the 

more detailed derivations of Nolte, 1979, and Gulrajani and Nolte, 2000). 𝑔0 is bounded within the range 

4/3 and 
𝜋

2
, and √2 lies within this range.   

A.9 Relative stiffness 

Using Equation 3 and Equation 25, it is possible to derive a ‘relative stiffness’ value (Srel) that is linearly 

proportional to fracture stiffness: 

𝑑𝑃

𝑑𝑡
= (

1

𝐶𝑡
 
𝑑𝑉

𝑑𝑡
) ∝

1

𝐶𝑡

𝑑ℎ

𝑑𝑡
.          (33) 

1

𝐶𝑡
∝

𝑑𝑃

𝑑𝑡
𝑑ℎ

𝑑𝑡

= 𝑆𝑟𝑒𝑙.           (34) 

Using tabular data of pressure versus time and an estimate for formation fluid pressure, it is possible to 

directly calculate the relative stiffness: 

𝑆𝑟𝑒𝑙(𝑡𝑘) =
𝑑𝑃

𝑑𝑡
(𝑡𝑘)

𝑑ℎ

𝑑𝑡
(𝑡𝑘)

=
𝑑𝑃(𝑡𝑘)

𝑑ℎ(𝑡𝑘)
.         (35) 

A plot of relative stiffness versus pressure can be used to identify contact. When the relative stiffness 

increases, this indicates that the fracture walls have come into contact (Wang and Sharma, 2018).  

Because of near-wellbore pressure drop, the measured wellbore pressure after shut-in is typically higher 

than the actual pressure in the far-field fracture. To address this problem, the relative stiffness and the h-

function can be calculated using an ‘effective pressure,’ Peff, that represents a best estimate for the true 

pressure in the fracture (Section 3.1.1).  

A.10 Methods of estimating permeability 

The following sections describe methods for estimating permeability and leakoff coefficient. We 

recommend estimating permeability from multiple techniques: the G-function technique, the h-function 

technique, impulse linear, and/or impulse radial. These estimates use different parts of the data and can be 

compared for consistency. At the end of this section, we review several common methods that are not 

recommended. 

A.10.i G-function technique 

Combining with Equations 4 and 17: 

𝑑𝑃

𝑑𝐺
=

1

𝐶𝑡
 
𝑑𝑉

𝑑𝐺
= −

𝜋

2
 𝐴𝐶𝐿𝑆𝑡√𝑡𝑒 = −

𝜋

2
𝐴𝐶𝐿√𝑡𝑒

𝐶𝑤+
𝐴

𝑆𝑓
+𝑉𝑓𝑐𝑓𝑙

.       (36) 
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𝑑𝑃

𝑑𝐺
 can be directly estimated from the data. 𝑉𝑓𝑐𝑓𝑙 is negligibly small and is omitted from the following 

equations. Assuming a radial crack, the leakoff coefficient can be calculated as: 

𝐶𝐿(𝑟𝑎𝑑𝑖𝑎𝑙) = −
𝑑𝑃

𝑑𝐺
 
𝐶𝑤+

16𝑅𝑓
3

3𝐸′

𝜋2

2
𝑅𝑓

2√𝑡𝑒

= −
𝑑𝑃

𝑑𝑔
 
𝐶𝑤+

16𝑅𝑓
3

3𝐸′

2𝜋𝑅𝑓
2√𝑡𝑒

.       (37) 

Assuming a fixed-height (PKN) crack, the leakoff coefficient can be calculated as: 

𝐶𝐿(𝑃𝐾𝑁) = −
𝑑𝑃

𝑑𝐺
 

2𝐶𝑤
𝜋

+
𝐿𝑓ℎ𝑓

2

𝐸′

𝐿𝑓ℎ𝑓√𝑡𝑒
= −

𝑑𝑃

𝑑𝑔
 
2𝐶𝑤+

𝐿𝑓ℎ𝑓
2𝜋

𝐸′

4𝐿𝑓ℎ𝑓√𝑡𝑒
.       (38) 

Equations 37 and 38 cannot be solved directly because they require estimation of the fracture size, either 

radius or length. In addition, the PKN calculation requires an assumption of fracture height. It is not possible 

to estimate height solely from the DFIT. It needs to be estimated from ancillary information, such as 

knowledge of a stress contrast creating height confinement. If wellbore storage is neglected and height is 

assumed, Equation 38 reduces to an equation that can be solved directly for leakoff coefficient (Marongiu-

Porcu et al., 2011).  

Radius and length in Equations 37 and 38 can be estimated by writing a mass balance equation for the entire 

system: 

𝑉𝑖𝑛𝑗 = 𝐶𝑤(𝑃(Δ𝑡) − 𝑃𝑤,𝑖𝑛𝑖𝑡) +
𝐴

𝑆𝑓
(𝑃(Δ𝑡) − 𝑆ℎ𝑚𝑖𝑛) + 2𝐴𝐶𝐿√𝑡𝑒𝑔(Δ𝑡).    (39) 

Equation 39 states that the volume of fluid injected is equal to wellbore storage, fluid stored in the fracture, 

and leakoff. Equation 39 forms a system of two equations (with Equation 37 or 38) and two unknowns (𝐶𝐿 

and Rf or Lf). These equations can be solved to estimate leakoff coefficient and fracture extent. 𝑃𝑤,𝑖𝑛𝑖𝑡 is the 

measured pressure at the beginning of injection. The term 𝐶𝑤(𝑃(Δ𝑡) − 𝑃𝑤,𝑖𝑛𝑖𝑡) accounts for the net flow 

due to wellbore storage. 

Equations 37, 38, and 39 must be evaluated at a particular point in time. We recommend evaluating dP/dG  

at the minimum point in dP/dG. Because dP/dG is never constant, this point is probably distorted by both 

near-wellbore pressure drop and contact. As a result, it is an upper bound on the true value of dP/dG and 

may lead to an overestimate of leakoff coefficient. Nevertheless, it is the best available point in time to 

estimate dP/dG. 

We recommend evaluating Equation 39 at the effective ISIP (Section 3.1.1) in order to minimize the relative 

impact of the Shmin uncertainty on the calculation of net pressure. Equation 39 is evaluated from the 

estimate of the effective ISIP, rather than the literal ISIP, because near-wellbore pressure drop elevates the 

literal ISIP far above the actual pressure in the fracture at shut-in. 

Once leakoff coefficient has been calculated, permeability can be calculated from Equation 19. 

A.10.ii h-function technique 

The assumption of Carter leakoff is a limitation of the G-function method. This limitation can be overcome 

using the h-function method. Similar to Equation 39, we can write a mass balance on the system using the 

h-function to calculate leakoff: 

𝑉𝑖𝑛𝑗 = 𝐶𝑤(𝑃(Δ𝑡) − 𝑃𝑤,𝑖𝑛𝑖𝑡) +
𝐴

𝑆𝑓
 (𝑃(Δ𝑡) − 𝑆ℎ𝑚𝑖𝑛) + 4𝐴ℎ(Δ𝑡)√

𝑘𝜙𝑐𝑡

𝜋𝜇
 .    (40) 

After selecting appropriate values for A and Sf (for either radial or PKN geometry), Equation 40 contains 

two unknowns: permeability and fracture radius (or length). The problem is solved by evaluating the 

equation at two different points in time: at shut-in (using the effective ISIP) and at the point of maximum 

G*dP/dG. The point of maximum G*dP/dG is reached a significant period of time after the fracture walls 
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come into contact. The fracture still retains some aperture, but it is reasonable to assume that the great 

majority of fluid has leaked off from the system. Specifically, we assume that 10% of the total injection 

volume remains stored in the fracture at this point in time (the calculation is not strongly dependent on the 

precise percentage that is assumed). This assumption yields: 

0.9𝑉𝑖𝑛𝑗 = 𝐶𝑤(𝑃𝑝𝑒𝑎𝑘 − 𝑃𝑤,𝑖𝑛𝑖𝑡) + 4𝐴ℎ(Δ𝑡𝑝𝑒𝑎𝑘)√
𝑘𝜙𝑐𝑡

𝜋𝜇
 .      (41) 

Rearrangement yields an equation for 𝐴√𝑘:  

𝐴√𝑘 =
0.9𝑉𝑖𝑛𝑗−𝐶𝑤(𝑃𝑝𝑒𝑎𝑘−𝑃𝑤,𝑖𝑛𝑖𝑡)

4ℎ(𝛥𝑡𝑝𝑒𝑎𝑘)√
𝜙𝑐𝑡
𝜋𝜇

 
.         (42) 

Equation 40 can be solved for area: 

𝐴 = (𝑉𝑖𝑛𝑗 − 𝐶𝑤(𝑃(Δ𝑡) − 𝑃𝑤,𝑖𝑛𝑖𝑡) − 𝐴√𝑘 (4ℎ(Δ𝑡)√
𝜙𝑐𝑡

𝜋𝜇
 ))

𝑆𝑓

𝑃−𝑆ℎ𝑚𝑖𝑛
.    (43) 

𝐴√𝑘 can be calculated from Equation 42 and plugged into Equation 43. Appropriate relations for A and Sf 

are plugged into Equation 43, assuming either radial or PKN geometry, and the equation can be solved for 

either radius or fracture length. Then, it is trivial to calculate area and permeability.  

We recommend evaluating Equation 40 at Δ𝑡 equal to zero (using the effective ISIP) in order to minimize 

the relative effect of uncertainty in the estimate of Shmin. For the case of Δ𝑡 = 0, Equation 40 reduces to: 

𝑉𝑖𝑛𝑗 = 𝐶𝑤(𝑃𝐼𝑆𝐼𝑃,𝑒𝑓𝑓 − 𝑃𝑤,𝑖𝑛𝑖𝑡) + 4(𝐴√𝑘)(𝑃𝐼𝑆𝐼𝑃,𝑒𝑓𝑓 − 𝑃𝑟𝑒𝑠)√
𝑡𝑒

2
√

𝜙𝑐𝑡

𝜋𝜇
 +

𝐴

𝑆𝑓
 (𝑃𝐼𝑆𝐼𝑃,𝑒𝑓𝑓 − 𝑆ℎ𝑚𝑖𝑛). (44) 

For radial geometry, the radius is calculated as: 

𝑅𝑓 = √
3𝐸′[𝑉𝑖𝑛𝑗−𝐶𝑤(𝑃𝐼𝑆𝐼𝑃,𝑒𝑓𝑓−𝑃𝑤,𝑖𝑛𝑖𝑡)−4(𝐴√𝑘)(𝑃𝐼𝑆𝐼𝑃,𝑒𝑓𝑓−𝑃𝑟𝑒𝑠)√

𝑡𝑒
2

√
𝜙𝑐𝑡
𝜋𝜇

 ]

16(𝑃𝐼𝑆𝐼𝑃,𝑒𝑓𝑓−𝑆ℎ𝑚𝑖𝑛)
 

3

     (45) 

For PKN geometry, the fracture length is calculated as: 

𝐿𝑓 =
2𝐸′[𝑉𝑖𝑛𝑗−𝐶𝑤(𝑃𝐼𝑆𝐼𝑃,𝑒𝑓𝑓−𝑃𝑤,𝑖𝑛𝑖𝑡)−4(𝐴√𝑘)(𝑃𝐼𝑆𝐼𝑃,𝑒𝑓𝑓−𝑃𝑟𝑒𝑠)√

𝑡𝑒
2

√
𝜙𝑐𝑡
𝜋𝜇

 ]

ℎ𝑓
2𝜋(𝑃𝐼𝑆𝐼𝑃,𝑒𝑓𝑓−𝑆ℎ𝑚𝑖𝑛)

.     (46) 

A.10.iii Impulse linear 

The late time behavior of a DFIT can be interpreted like an impulse test from classical well test analysis 

(Craig and Blasingame, 2006). The late-time analytical solution for linear flow with constant rate injection 

is (Gringarten et al., 1974): 

𝑃 = 𝑃𝑟𝑒𝑠 +
𝑄

𝐴
√

𝜇

𝜋𝑘𝑐𝑡𝜙
√Δ𝑡,         (47) 

where Q is the volumetric injection rate. Taking the derivative of the nondimensionalized form of the 

equation, we can find the solution for injection of a volume of fluid Vslug into the system (Houze et al, 1988; 

Ayoub et al., 1988; Gu et al, 1993). 𝑉𝑠𝑙𝑢𝑔 should take wellbore storage into account:  

𝑃 = 𝑃𝑟𝑒𝑠 +
𝑉𝑖𝑛𝑗−𝐶𝑤(𝑃𝑟𝑒𝑠−𝑃𝑤,𝑖𝑛𝑖𝑡)

2𝐴
√

𝜇

𝜋𝑘𝑐𝑡𝜙

1

√Δ𝑡
.       (48) 

Equation 48 can be rearranged to calculate 𝐴√𝑘 from the slope of a plot of pressure versus 
1

Δ𝑡1/2. Once 𝐴√𝑘 

has been estimated, radius (or length) and permeability can be estimated from Equations 45 and 46.  
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A.10.iv Impulse radial 

The late-time analytical solution for radial flow with constant rate injection is (Theis, 1935; Horne, 1995): 

𝑃 − 𝑃𝑟𝑒𝑠 =
𝑄𝜇

2𝜋𝑘ℎ
[0.5 (𝑙𝑛 (

𝑘Δ𝑡

𝜙𝜇𝑐𝑡𝑟𝑤
2) + 0.80907) + 𝑠].      (49) 

Therefore, impulse radial is the derivative of the constant rate solution (Houze et al, 1988; Ayoub et al., 

1988; Gu et al, 1993): 

𝑃 − 𝑃𝑟𝑒𝑠 =
(𝑉𝑖𝑛𝑗−𝐶𝑤(𝑃𝑟𝑒𝑠−𝑃𝑤,𝑖𝑛𝑖𝑡))𝜇

4𝜋𝑘ℎ

1

Δ𝑡
.        (50) 

Equation 50 can be rearranged to show that the permeability-thickness product, 𝑘ℎ, can be calculated from 

the slope of a plot of pressure versus 
1

Δ𝑡
. To calculate permeability, it is necessary to make an estimate for 

h, the height of the permeable formation. If well logs indicate that there is a clear ‘pay’ zone with higher 

permeability than surrounding formations, then the thickness of this zone can be used for h. Alternatively, 

if well logs indicate strong height confinement, then the fracture can be assumed to have known height, and 

this value can be used for h.  

If there is not clear indication of height confinement and there is a not a single ‘high permeability’ pay 

zone, we recommend using a radial fracture geometry and setting h equal to 2Rf. For known kh (estimated 

from Equation 50), then k is approximately equal to 
(𝑘ℎ)𝑒𝑠𝑡

2𝑅𝑓
. Equation 44 becomes: 

𝑉𝑖𝑛𝑗 = 𝐶𝑤(𝑃𝐼𝑆𝐼𝑃,𝑒𝑓𝑓 − 𝑃𝑤,𝑖𝑛𝑖𝑡) + 4 (𝜋𝑅𝑓
2√

(𝑘ℎ)𝑒𝑠𝑡

2𝑅𝑓

) (𝑃𝐼𝑆𝐼𝑃,𝑒𝑓𝑓 − 𝑃𝑟𝑒𝑠)√
𝑡𝑒

2
√

𝜙𝑐𝑡

𝜋𝜇
 +  

16𝑅𝑓
3

3𝐸′
  (𝑃𝐼𝑆𝐼𝑃,𝑒𝑓𝑓 − 𝑆ℎ𝑚𝑖𝑛) 

            (51) 

Equation 51 is a cubic equation for Rf. It can be solved with a nonlinear solver and then used to estimate h 

and k.  

A.11 The linear flow time function 

Sometimes, impulse interpretations are performed with the ‘linear flow time function’ defined by Gulrajani 

and Nolte (2000) as: 

𝐹𝐿 =
2

𝜋
sin−1 √

𝑡𝑐

Δ𝑡
,          (52) 

where tc is the shut-in time to ‘closure.’ 𝐹𝐿 is only defined for Δ𝑡 ≥ 𝑡𝑐. 𝐴√𝑘 is estimated from impulse 

linear flow using a plot of pressure versus 𝐹𝐿 or 𝐹𝐿
−1. 𝑘ℎ is estimated from impulse radial flow using a plot 

of pressure versus 𝐹𝐿
2 or 𝐹𝐿

−2.  

Equation 52 can be understood by considering the behavior of the arcsine function as its argument 

approaches zero: 

lim
𝑥→0

sin−1 𝑥 = 𝑥.          (53) 

Therefore, once 𝑡𝑐 + Δ𝑡 is substantially larger than tc, 𝐹𝐿 can be approximated as: 

𝐹𝐿 ≈
2

𝜋
√

𝑡𝑐

Δ𝑡
.           (54) 

For Δ𝑡 equal to 2𝑡𝑐, the approximation is accurate within 11%. For Δ𝑡 equal to 10𝑡𝑐, the approximation is 

accurate within 2%. 
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Thus, for most practical purposes, a plot of pressure versus 𝐹𝐿 is equivalent to a plot of pressure versus 

reciprocal square root of time, and a plot of pressure versus 𝐹𝐿
2 is equivalent to a plot of pressure versus 

reciprocal time. A plot of 𝐹𝐿
−2 is equivalent to a plot of pressure versus time.  

The FL function is significantly different from 
2

𝜋
√

𝑡𝑐

𝛥𝑡
 in the period from Δ𝑡 = 𝑡𝑐 to Δ𝑡 = 2𝑡𝑐 (it is not defined 

prior to tc). Should FL be used if data is not available for Δ𝑡 greater than 2𝑡𝑐? Possibly, but interpreters 

should keep in mind the assumptions underlying FL. It is derived assuming that Carter leakoff occurs until 

closure, and then there is zero leakoff after closure (Nolte et al., 1997; page 76 from Carslaw and Jaeger, 

1959). But in reality, leakoff rate gradually deviates from Carter leakoff as pressure decreases in a system 

coupled with nonlinear evolution of system storage (Section A.13). Because of this simplification, the 

period from Δ𝑡 = 𝑡𝑐 to Δ𝑡 = 2𝑡𝑐  is the period when the assumptions underlying FL are least reliable. After 

this period, FL is similar to the impulse solution. 

A.12 Estimating efficiency 

Fracture efficiency, 𝜂, is defined as the volume of fluid remaining in the fracture at shut-in divided by the 

volume of fluid injected into the fracture (the total injection volume minus wellbore storage). A classical 

equation for estimating efficiency is (Equation 9-60 from Gulrajani and Nolte, 2001): 

𝜂 =
𝐺𝑐

2+𝐺𝑐
,           (55) 

where 𝐺𝑐 is G-time at ‘closure.’  

Equation 55 is derived assuming the same assumptions discussed in Section A.11: Carter leakoff occurs 

until ‘closure,’ at which point there is zero fluid remaining in the fracture. Conventionally, Equation 55 

would be applied with the tangent method for picking closure. But there has been substantial deviation from 

Carter leakoff by the time of the tangent closure pick. As discussed in Section 3.1.9, due to fracture 

roughness, there is likely to be significant fluid remaining the fracture at the point of contact, and even 

when pressure is equal to or less than Shmin. Because of the offsetting effect of different approximations, 

Equation 55 often yields a reasonable approximation of efficiency in many cases if applied with the tangent 

method of picking closure.  

Alternatively, efficiency can be estimated after estimating leakoff coefficient and/or permeability using the 

techniques in Section A.10. Then, cumulative leakoff at shut-in can be estimated from Equation 13, and 

efficiency can be calculated directly by applying mass balance (including the effect of wellbore storage): 

𝜂 =
𝑉𝑖𝑛𝑗−𝐶𝑤(𝑃−𝑃𝑤,𝑖𝑛𝑖𝑡)−𝑉𝐿(Δ𝑡=0)

𝑉𝑖𝑛𝑗−𝐶𝑤(𝑃−𝑃𝑤,𝑖𝑛𝑖𝑡)
.         (56) 

A.13 Estimating pore pressure with a short shut-in 

Sometimes, DFIT’s are not performed with sufficient shut-in duration to reach impulse linear or radial. A 

simple numerical simulation and history match can be used to provide a rough estimate for fluid pressure. 

1. Assume W0 and Pres. 

2. Use the h-function method to integrate the measured pressure data (after conversion to Peff) and use 

the method in Section A.10.ii to infer leakoff coefficient and fracture surface area. Use the 

estimated area and assumed fracture geometry to calculate Sf,o. 

3. Numerically solve the following equation for a DFIT pressure transient (derived from Equation 3): 

𝑑𝑃

𝑑𝑡
(

𝐴

𝑆𝑓
+ 𝐶𝑤) =

𝑑𝑉𝐿

𝑑𝑡
.         (57) 
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𝑑𝑉𝐿

𝑑𝑡
 is the leakoff rate, calculated from Equation 25. When the calculated aperture reaches Wo, the 

fracture stiffness is increased to account for the contribution of Sf,c, as discussed in Section A.1.ii. The 

integration can be solved numerically with explicit Euler: 

𝑃𝑘 = 𝑃𝑘−1 + (
𝑑𝑃

𝑑𝑡
)

𝑘
Δ𝑡,         (58) 

where (
𝑑𝑃

𝑑𝑡
)

𝑘
 is calculated from Equation 57. 

4. Check to see if the timing and value of the peak in t*dP/dt has been accurately predicted. If not, go 

back to Step 1 and select new values for W0 and Pres. Iterate until convergence. 

A.14 Generating plots of aperture versus effective normal stress 

Wang and Sharma (2018) propose a method for estimating aperture versus pressure. The technique in this 

section is conceptually similar. From Equation 35, the derivative of P with respect to h is proportional to 

system stiffness. Therefore, neglecting wellbore storage, we can write: 

𝑑𝑃

𝑑ℎ

(
𝑑𝑃

𝑑ℎ
)𝑚𝑖𝑛

𝑆𝑓

𝐴
=

𝑑𝑃

𝑑𝑉
.           (59) 

The permeability estimation methods in Section A.10 yield estimates of fracture area and stiffness prior to 

contact, Sfo. Next, estimate the derivative of pressure with respect to aperture:  

𝑑𝑃

𝑑𝑊
= 𝐴

𝑑𝑃

𝑑𝑉
.           (60) 

If we assume that aperture at the peak of G*dP/dG is an arbitrary, small value, 3.28e-5 ft, then we can 

perform an integral to roughly approximate average fracture aperture as a function of pressure: 

𝑊(𝑃) = 3.28 ∗ 10−5  + ∫
1

𝑑𝑃

𝑑𝑊

𝑑𝑃
𝑃

𝑃𝑝𝐺
,        (61) 

where 𝑃𝑝𝐺 is the pressure at the peak G*dP/dG. Figure 7 shows a result from this procedure.  


